×

Special relativity kinematics with anisotropic propagation of light and correspondence principle. (English) Zbl 1434.78011

Summary: The purpose of the present paper is to develop kinematics of the special relativity with an anisotropy of the one-way speed of light. As distinct from a common approach, when the issue of anisotropy of the light propagation is placed into the context of conventionality of distant simultaneity, it is supposed that an anisotropy of the one-way speed of light is due to a real space anisotropy. In that situation, some assumptions used in developing the standard special relativity kinematics are not valid so that the “anisotropic special relativity” kinematics should be developed based on the first principles, without refereeing to the relations of the standard relativity theory. In particular, using condition of invariance of the interval between two events becomes unfounded in the presence of anisotropy of space since the standard proofs drawing the interval invariance from the invariance of equation of light propagation are not valid in that situation. Instead, the invariance of the equation of light propagation (with an anisotropy of the one-way speed of light incorporated), which is a physical law, should be taken as a first principle. A number of other physical requirements, associativity, reciprocity and so on are satisfied by the requirement that the transformations between the frames form a group. Finally, the correspondence principle is to be satisfied which implies that the coordinate transformations should turn into the Galilean transformations in the limit of small velocities. The above formulation based on the invariance and group property suggests applying the Lie group theory apparatus which includes the following steps: constructing determining equations for the infinitesimal group generators using the invariance condition; solving the determining equations; specifying the solutions using the correspondence principle; defining the finite transformations by solving the Lie equations; relating the group parameter to physical parameters. The transformations derived in such a way, as distinct from the transformations derived in the context of conventionality of distant simultaneity, cannot be converted into the standard Lorentz transformations by a coordinate (synchrony) change. The anisotropic nature of the presented transformations manifests itself in that they do not leave the interval invariant but only provide the conformal invariance of the interval. The relations that represent measurable effects include the conformal factor which depends on the relative velocity of the frames and the anisotropy degree. It is important to note the use of the correspondence principle as a heuristic principle which allows to relate the conformal factor to the anisotropy degree and thus completely specify the transformations and observable quantities.

MSC:

78A40 Waves and radiation in optics and electromagnetic theory
78A25 Electromagnetic theory (general)
83A05 Special relativity
22E70 Applications of Lie groups to the sciences; explicit representations
Full Text: DOI

References:

[1] Ungar, A.A.: Formalism to deal with Reichenbach’s special theory of relativity. Found. Phys. 21, 691-726 (1991) · doi:10.1007/BF00733277
[2] Anderson, R., Vetharaniam, I., Stedman, G.E.: Conventionality of synchronisation, gauge dependence and test theories of relativity. Phys. Rep. 295, 93-180 (1998) · doi:10.1016/S0370-1573(97)00051-3
[3] Minguzzi, E.: On the conventionality of simultaneity. Found. Phys. Lett. 15, 153-169 (2002) · doi:10.1023/A:1020900108093
[4] Rizzi, G., Ruggiero, M.L., Serafini, A.: Synchronization gauges and the principles of special relativity. Found. Phys. 34, 1835-1887 (2004) · Zbl 1073.83005 · doi:10.1007/s10701-004-1624-3
[5] Reichenbach, H.: The Philosophy of Space and Time. Dover, New York (1958) · Zbl 0082.01301
[6] Edwards, W.F.: Special relativity in anisotropic space. Am. J. Phys. 31, 482-489 (1963) · Zbl 0113.43305 · doi:10.1119/1.1969607
[7] Winnie, J.A.: Special relativity without one-way velocity assumptions: Part II. Philos. Sci. 37, 223-238 (1970) · doi:10.1086/288296
[8] Ungar, A.A.: The Lorentz transformation group of the special theory of relativity without Einstein’s isotropy convention. Philos. Sci. 53, 395-402 (1986) · doi:10.1086/289324
[9] Pauli, W.: Theory of Relativity. Pergamon Press, London (1958) · Zbl 0101.43403
[10] Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Pergamon Press, Oxford (1971) · Zbl 0178.28704
[11] Møller, C.: The Theory of Relativity. Clarendon Press, Oxford (1962) · Zbl 0047.20602
[12] Cunningham, E.: The principle of relativity in electrodynamics and an extension thereof. Proc. Lond. Math. Soc. 8, 77-98 (1910) · JFM 40.0928.01 · doi:10.1112/plms/s2-8.1.77
[13] Bateman, H.: The transformation of the electrodynamical euations. Proc. Lond. Math. Soc. 8, 223-264 (1910) · JFM 41.0942.03 · doi:10.1112/plms/s2-8.1.223
[14] Fulton, T., Rohrlich, F., Witten, L.: Conformal invariance in physics. Rev. Mod. Phys. 34, 442-457 (1962) · Zbl 0107.40804 · doi:10.1103/RevModPhys.34.442
[15] Kastrup, H.A.: On the advancements of conformal transformations and their associated symmetries in geometry and theoretical physics. Ann. Phys. (Berlin) 17, 631-690 (2008) · Zbl 1152.81300 · doi:10.1002/andp.200810324
[16] Bogoslovsky, G.Y., Goenner, H.F.: Finslerian spaces possessing local relativistic symmetry. Gen. Relativ. Gravit. 31, 1565-1603 (1999) · Zbl 0932.83001 · doi:10.1023/A:1026786505326
[17] Bogoslovsky, G.Y.: Lorentz symmetry violation without violation of relativistic symmetry. Phys. Lett. A 350, 5-10 (2006) · Zbl 1195.81091 · doi:10.1016/j.physleta.2005.11.007
[18] Sonego, S., Pin, M.: Foundations of anisotropic relativistic mechanics. J. Math. Phys. 50, 042902-1-042902-28 (2009) · Zbl 1214.70011 · doi:10.1063/1.3104065
[19] Lalan, V.: Sur les postulats qui sont à la base des cinématiques. Bull. Soc. Math. France 65, 83-99 (1937) · JFM 63.0347.02
[20] Frank, Ph, Rothe, H.: Ueber die Transformation der Raumzeitkoordinaten von ruhenden auf bewegte Systeme. Ann. Phys. 34, 825-853 (1911) · JFM 42.0722.02 · doi:10.1002/andp.19113390502
[21] von Ignatowski, W.A.: Einige allgemeine Bemerkungen zum Relativitätsprinzip. Phys. Z. 11, 972-976 (1910) · JFM 41.0766.01
[22] Ghosal, S.K., Nandi, K.K., Chakraborty, P.: Passage from Einsteinian to Galilean relativity and clock synchrony. Z. Naturforsch 46a, 256-258 (1991) · Zbl 0801.53065
[23] Baierlein, R.: Two myths about special relativity. Am. J. Phys. 74, 193-195 (2006) · doi:10.1119/1.2151212
[24] Bluman, G.W., Kumei, S.: Symmetries and Differential Equations, Applied Mathematical Sciences, vol. 81. Springer, New York (1989) · Zbl 0698.35001 · doi:10.1007/978-1-4757-4307-4
[25] Olver, P.J.: Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics. Springer, New York (1993) · Zbl 0785.58003 · doi:10.1007/978-1-4612-4350-2
[26] Winnie, J.A.: Special relativity without one-way velocity assumptions: Part I. Philos. Sci. 37, 81-99 (1970) · doi:10.1086/288281
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.