×

Congruence lattices of ideals in categories and (partial) semigroups. (English) Zbl 1515.20009

Memoirs of the American Mathematical Society 1408. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-6269-7/pbk; 978-1-4704-7446-1/ebook). vii, 129 p. (2023).
In this monograph, the congruences of several monoids, categories of transformations, diagrams, matrices and braids together with congruences on their ideals are studied. The authors present an interactive strategy for starting from the smallest ideals stacking certain normal subgroup lattices on top of each other to successively build congruence lattices of a chain of ideals developing further the technology from [J. East et al., Adv. Math. 333, 931–1003 (2018; Zbl 1400.20060)]. This technology is used to describe lattices of chains of ideals in several categories: transformations; order/orientation preserving/reversing transformations; partitions; planar/annular partitions; Brauer, Temperley-Lieb and Jones partitions; linear and projective linear transformations and partial braids.

MSC:

20-02 Research exposition (monographs, survey articles) pertaining to group theory
20M20 Semigroups of transformations, relations, partitions, etc.
15A04 Linear transformations, semilinear transformations
18B40 Groupoids, semigroupoids, semigroups, groups (viewed as categories)
20M10 General structure theory for semigroups
20M50 Connections of semigroups with homological algebra and category theory

Citations:

Zbl 1400.20060

Software:

Semigroups; GAP

References:

[1] Abramsky, Samson, Mathematics of quantum computation and quantum technology. Temperley-Lieb algebra: from knot theory to logic and computation via quantum mechanics, Chapman & Hall/CRC Appl. Math. Nonlinear Sci. Ser., 515-558 (2008), Chapman & Hall/CRC, Boca Raton, FL · Zbl 1135.81006
[2] A{\u{\i }}zen{\v{s}}tat, A. Ja., On homomorphisms of semigroups of endomorphisms of ordered sets, Leningrad. Gos. Ped. Inst. U\v cen. Zap., 38\ndash 48 pp. (1962) · Zbl 0208.29602
[3] Ara\'{u}jo, Jo{\~{a}}o, Congruences on direct products of transformation and matrix monoids, Semigroup Forum, 384\ndash 416 pp. (2018) · Zbl 1467.20084 · doi:10.1007/s00233-018-9931-8
[4] Artin, E., Theory of braids, Ann. of Math. (2), 101-126 (1947) · Zbl 0030.17703 · doi:10.2307/1969218
[5] Artin, E., Geometric algebra, x+214 pp. (1957), Interscience Publishers, Inc., New York-London · Zbl 0642.51001
[6] Artin, Emil, Theorie der Z\"{o}pfe, Abh. Math. Sem. Univ. Hamburg, 47-72 (1925) · JFM 51.0450.01 · doi:10.1007/BF02950718
[7] Auinger, Karl, Equational theories of semigroups with involution, J. Algebra, 203-225 (2012) · Zbl 1294.20072 · doi:10.1016/j.jalgebra.2012.06.021
[8] Baez, J., Physics, topology, logic and computation: a {R}osetta {S}tone, Lecture Notes in Phys.. New structures for physics, 95\ndash 172 pp. (2011), Springer, Heidelberg · Zbl 1218.81008 · doi:10.1007/978-3-642-12821-9_2
[9] Baez, John C., Hochschild homology in a braided tensor category, Trans. Amer. Math. Soc., 885\ndash 906 pp. (1994) · Zbl 0814.18003 · doi:10.2307/2154514
[10] Baez, John C., Higher-dimensional algebra and topological quantum field theory, J. Math. Phys., 6073-6105 (1995) · Zbl 0863.18004 · doi:10.1063/1.531236
[11] Baez, John C., Higher-dimensional algebra. {I}. {B}raided monoidal {\(2\)}-categories, Adv. Math., 196\ndash 244 pp. (1996) · Zbl 0855.18008 · doi:10.1006/aima.1996.0052
[12] Benkart, Georgia, Motzkin algebras, European J. Combin., 473-502 (2014) · Zbl 1284.05333 · doi:10.1016/j.ejc.2013.09.010
[13] Benkart, Georgia, Partition algebras \(\mathsf{P}_k(n)\) with \(2k>n\) and the fundamental theorems of invariant theory for the symmetric group \(\mathsf{S}_n\), J. Lond. Math. Soc. (2), 194-224 (2019) · Zbl 1411.05274 · doi:10.1112/jlms.12175
[14] Bigelow, Stephen, The Alexander and Jones polynomials through representations of rook algebras, J. Knot Theory Ramifications, 1250114, 18 pp. (2012) · Zbl 1321.57004 · doi:10.1142/S0218216512501143
[15] Birman, Joan S., Braids, links, and mapping class groups, Annals of Mathematics Studies, No. 82, ix+228 pp. (1974), Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo
[16] Borisavljevi\'{c}, Mirjana, Kauffman monoids, J. Knot Theory Ramifications, 127-143 (2002) · Zbl 1025.57015 · doi:10.1142/S0218216502001524
[17] Brauer, Richard, On algebras which are connected with the semisimple continuous groups, Ann. of Math. (2), 857-872 (1937) · Zbl 0017.39105 · doi:10.2307/1968843
[18] Catarino, P. M., The monoid of orientation-preserving mappings on a chain, Semigroup Forum, 190\ndash 206 pp. (1999) · Zbl 0919.20041 · doi:10.1007/s002339900014
[19] Clifford, A. H., The algebraic theory of semigroups. Vol. I, Mathematical Surveys, No. 7, xv+224 pp. (1961), American Mathematical Society, Providence, R.I. · Zbl 0111.03403
[20] Clifford, A. H., The algebraic theory of semigroups. Vol. II, Mathematical Surveys, No. 7, xv+350 pp. (1967), American Mathematical Society, Providence, R.I. · Zbl 0178.01203
[21] Cockett, J. R. B., Restriction categories. I. Categories of partial maps, Theoret. Comput. Sci., 223-259 (2002) · Zbl 0988.18003 · doi:10.1016/S0304-3975(00)00382-0
[22] Dolinka, Igor, Sandwich semigroups in diagram categories, Internat. J. Algebra Comput., 1339-1404 (2021) · Zbl 1495.18005 · doi:10.1142/S021819672150048X
[23] Dolinka, Igor, Semigroups of rectangular matrices under a sandwich operation, Semigroup Forum, 253-300 (2018) · Zbl 1414.20021 · doi:10.1007/s00233-017-9873-6
[24] Dolinka, Igor, Twisted Brauer monoids, Proc. Roy. Soc. Edinburgh Sect. A, 731-750 (2018) · Zbl 1489.20025 · doi:10.1017/S0308210517000282
[25] Dolinka, Igor, Motzkin monoids and partial Brauer monoids, J. Algebra, 251-298 (2017) · Zbl 1406.20065 · doi:10.1016/j.jalgebra.2016.09.018
[26] Dolinka, Igor, Sandwich semigroups in locally small categories I: foundations, Algebra Universalis, Paper No. 75, 35 pp. (2018) · Zbl 1403.20069 · doi:10.1007/s00012-018-0537-5
[27] Dolinka, Igor, Sandwich semigroups in locally small categories II: transformations, Algebra Universalis, Paper No. 76, 53 pp. (2018) · Zbl 1403.20070 · doi:10.1007/s00012-018-0539-3
[28] Doran, William F., IV, The partition algebra revisited, J. Algebra, 265-330 (2000) · Zbl 0974.20013 · doi:10.1006/jabr.2000.8365
[29] Do\v{s}en, Kosta, Syntax for split preorders, Ann. Pure Appl. Logic, 443\ndash 481 pp. (2013) · Zbl 1262.18003 · doi:10.1016/j.apal.2012.10.008
[30] Easdown, D., The inverse braid monoid, Adv. Math., 438\ndash 455 pp. (2004) · Zbl 1113.20051 · doi:10.1016/j.aim.2003.07.014
[31] East, James, Braids and partial permutations, Adv. Math., 440\ndash 461 pp. (2007) · Zbl 1151.20030 · doi:10.1016/j.aim.2007.01.002
[32] East, James, Vines and partial transformations, Adv. Math., 787\ndash 810 pp. (2007) · Zbl 1175.20048 · doi:10.1016/j.aim.2007.06.005
[33] East, James, Braids and order-preserving partial permutations, J. Knot Theory Ramifications, 1025-1049 (2010) · Zbl 1208.20048 · doi:10.1142/S0218216510008339
[34] East, James, Singular braids and partial permutations, Acta Sci. Math. (Szeged), 55-77 (2015) · Zbl 1374.20048 · doi:10.14232/actasm-014-012-7
[35] East, James, Presentations for rook partition monoids and algebras and their singular ideals, J. Pure Appl. Algebra, 1097-1122 (2019) · Zbl 1499.20126 · doi:10.1016/j.jpaa.2018.05.016
[36] East, James, Presentations for tensor categories, Preprint (2020, \arXiv{2005.01953})
[37] East, James, Diagram monoids and Graham-Houghton graphs: idempotents and generating sets of ideals, J. Combin. Theory Ser. A, 63-128 (2017) · Zbl 1351.05227 · doi:10.1016/j.jcta.2016.09.001
[38] East, James, Congruence lattices of finite diagram monoids, Adv. Math., 931-1003 (2018) · Zbl 1400.20060 · doi:10.1016/j.aim.2018.05.016
[39] East, James, Congruences on infinite partition and partial Brauer monoids, Mosc. Math. J., 295-372 (2022) · Zbl 1530.20191 · doi:10.17323/1609-4514-2022-22-2-295-372
[40] Fernandes, V. H., The monoid of all injective order preserving partial transformations on a finite chain, Semigroup Forum, 178-204 (2001) · Zbl 1053.20056 · doi:10.1007/s002330010056
[41] Fernandes, V\'{\i }tor H., Congruences on monoids of order-preserving or order-reversing transformations on a finite chain, Glasg. Math. J., 413-424 (2005) · Zbl 1083.20056 · doi:10.1017/S0017089505002648
[42] Fernandes, V\'{\i }tor H., Congruences on monoids of transformations preserving the orientation of a finite chain, J. Algebra, 743-757 (2009) · Zbl 1167.20035 · doi:10.1016/j.jalgebra.2008.11.005
[43] FitzGerald, D. G., On the partition monoid and some related semigroups, Bull. Aust. Math. Soc., 273-288 (2011) · Zbl 1230.20061 · doi:10.1017/S0004972710001851
[44] Flath, Daniel, The planar rook algebra and Pascal’s triangle, Enseign. Math. (2), 77-92 (2009) · Zbl 1209.20004 · doi:10.4171/lem/55-1-3
[45] Freyd, Peter J., Braided compact closed categories with applications to low-dimensional topology, Adv. Math., 156-182 (1989) · Zbl 0679.57003 · doi:10.1016/0001-8708(89)90018-2
[46] Ganyushkin, Olexandr, Classical finite transformation semigroups, Algebra and Applications, xii+314 pp. (2009), Springer-Verlag London, Ltd., London · Zbl 1166.20056 · doi:10.1007/978-1-84800-281-4
[47] {GAP – Groups, Algorithms, and Programming, Version 4.10.1} (2019)
[48] Gilbert, N. D., Presentations of the inverse braid monoid, J. Knot Theory Ramifications, 571-588 (2006) · Zbl 1140.20042 · doi:10.1142/S0218216506004609
[49] Gomes, Gracinda M. S., On the ranks of certain semigroups of order-preserving transformations, Semigroup Forum, 272-282 (1992) · Zbl 0769.20029 · doi:10.1007/BF03025769
[50] Graham, J. J., Cellular algebras, Invent. Math., 1\ndash 34 pp. (1996) · Zbl 0853.20029 · doi:10.1007/BF01232365
[51] Graham, J. J., The representation theory of affine Temperley-Lieb algebras, Enseign. Math. (2), 173-218 (1998) · Zbl 0964.20002
[52] Gray, R., Idempotent rank in endomorphism monoids of finite independence algebras, Proc. Roy. Soc. Edinburgh Sect. A, 303-331 (2007) · Zbl 1197.08001 · doi:10.1017/S0308210505000636
[53] Gray, R., Hall’s condition and idempotent rank of ideals of endomorphism monoids, Proc. Edinb. Math. Soc. (2), 57-72 (2008) · Zbl 1138.20056 · doi:10.1017/S0013091504001397
[54] Grood, Cheryl, The rook partition algebra, J. Combin. Theory Ser. A, 325-351 (2006) · Zbl 1082.05095 · doi:10.1016/j.jcta.2005.03.006
[55] Hall, T. E., On regular semigroups, J. Algebra, 1-24 (1973) · Zbl 0262.20074 · doi:10.1016/0021-8693(73)90150-6
[56] Halverson, Tom, Partition algebras, European J. Combin., 869\ndash 921 pp. (2005) · Zbl 1112.20010 · doi:10.1016/j.ejc.2004.06.005
[57] Howie, J. M., Idempotent generators in finite full transformation semigroups, Proc. Roy. Soc. Edinburgh Sect. A, 317-323 (1978) · Zbl 0403.20038 · doi:10.1017/S0308210500010647
[58] Howie, John M., Fundamentals of semigroup theory, London Mathematical Society Monographs. New Series, x+351 pp. (1995), The Clarendon Press, Oxford University Press, New York · Zbl 0835.20077
[59] Howie, John M., Idempotent rank in finite full transformation semigroups, Proc. Roy. Soc. Edinburgh Sect. A, 161-167 (1990) · Zbl 0704.20050 · doi:10.1017/S0308210500024355
[60] Jech, Thomas, Set theory, Springer Monographs in Mathematics, xiv+769 pp. (2003), Springer-Verlag, Berlin · Zbl 1007.03002
[61] Jones, V. F. R., Index for subfactors, Invent. Math., 1-25 (1983) · Zbl 0508.46040 · doi:10.1007/BF01389127
[62] Jones, V. F. R., Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2), 335-388 (1987) · Zbl 0631.57005 · doi:10.2307/1971403
[63] Jones, V. F. R., Subfactors. The Potts model and the symmetric group, 259-267 (1993), World Sci. Publ., River Edge, NJ · Zbl 0938.20505
[64] Jones, V. F. R., A quotient of the affine Hecke algebra in the Brauer algebra, Enseign. Math. (2), 313-344 (1994) · Zbl 0852.20035
[65] Jones, Vaughan F. R., Essays on geometry and related topics, Vol. 1, 2. The annular structure of subfactors, Monogr. Enseign. Math., 401-463 (2001), Enseignement Math., Geneva · Zbl 1019.46036
[66] Jones, Vaughan F. R., Infinite index subfactors and the GICAR categories, Comm. Math. Phys., 729-768 (2015) · Zbl 1338.46067 · doi:10.1007/s00220-015-2407-8
[67] Joyal, Andr\'{e}, Braided tensor categories, Adv. Math., 20\ndash 78 pp. (1993) · Zbl 0817.18007 · doi:10.1006/aima.1993.1055
[68] Kastl, J., Algebraische Modelle, Kategorien und Gruppoide. Inverse categories, Stud. Algebra Anwendungen, 51-60 (1979), Akademie-Verlag, Berlin · Zbl 0427.18003
[69] Kauffman, Louis H., State models and the Jones polynomial, Topology, 395-407 (1987) · Zbl 0622.57004 · doi:10.1016/0040-9383(87)90009-7
[70] Kauffman, Louis H., An invariant of regular isotopy, Trans. Amer. Math. Soc., 417-471 (1990) · Zbl 0763.57004 · doi:10.2307/2001315
[71] Kelly, G. M., On the radical of a category, J. Austral. Math. Soc., 299-307 (1964) · Zbl 0124.01501
[72] Klimov, V. N., Congruences of globally idempotent semigroups, Ural. Gos. Univ. Mat. Zap., 73-105, 217 (1977) · Zbl 0434.20035
[73] K\"{o}nig, Steffen, A characteristic free approach to Brauer algebras, Trans. Amer. Math. Soc., 1489-1505 (2001) · Zbl 0996.16009 · doi:10.1090/S0002-9947-00-02724-0
[74] Lallement, G\'{e}rard, Demi-groupes r\'{e}guliers, Ann. Mat. Pura Appl. (4), 47-129 (1967) · Zbl 0186.03302 · doi:10.1007/BF02416940
[75] Lau, Kwok Wai, Ideal structure of the Kauffman and related monoids, Comm. Algebra, 2617-2629 (2006) · Zbl 1103.47032 · doi:10.1080/00927870600651414
[76] Lavers, T. G., The theory of vines, Comm. Algebra, 1257-1284 (1997) · Zbl 0876.20041 · doi:10.1080/00927879708825919
[77] Lehrer, G. I., The Brauer category and invariant theory, J. Eur. Math. Soc. (JEMS), 2311-2351 (2015) · Zbl 1328.14079 · doi:10.4171/JEMS/558
[78] Lehrer, Gustav, The second fundamental theorem of invariant theory for the orthogonal group, Ann. of Math. (2), 2031-2054 (2012) · Zbl 1263.20043 · doi:10.4007/annals.2012.176.3.12
[79] Lehrer, Gustav I., Invariants of the special orthogonal group and an enhanced Brauer category, Enseign. Math., 181-200 (2017) · Zbl 1385.16040 · doi:10.4171/LEM/63-1/2-6
[80] Liber, A. E., On symmetric generalized groups, Mat. Sbornik N.S., 531-544 (1953) · Zbl 0052.01703
[81] Mac Lane, Saunders, Categories for the working mathematician, Graduate Texts in Mathematics, xii+314 pp. (1998), Springer-Verlag, New York · Zbl 0906.18001
[82] Mal\textprime cev, A. I., Symmetric groupoids ({R}ussian), Mat. Sbornik N.S., 136\ndash 151 pp. (1952)
[83] Mal\textprime cev, A. I., Multiplicative congruences of matrices, Doklady Akad. Nauk SSSR (N.S.), 333\ndash 335 pp. (1953)
[84] Marques-Smith, M. Paula O., The congruences on the semigroup of balanced transformations of an infinite set, J. Algebra, 1\ndash 30 pp. (2000) · Zbl 0968.20034 · doi:10.1006/jabr.2000.8391
[85] Martin, Paul, Potts models and related problems in statistical mechanics, Series on Advances in Statistical Mechanics, xiv+344 pp. (1991), World Scientific Publishing Co., Inc., Teaneck, NJ · Zbl 0734.17012 · doi:10.1142/0983
[86] Martin, Paul, Temperley-Lieb algebras for nonplanar statistical mechanics-the partition algebra construction, J. Knot Theory Ramifications, 51-82 (1994) · Zbl 0804.16002 · doi:10.1142/S0218216594000071
[87] Martin, Paul, Noncommutative rings, group rings, diagram algebras and their applications. On diagram categories, representation theory and statistical mechanics, Contemp. Math., 99-136 (2008), Amer. Math. Soc., Providence, RI · Zbl 1143.82300 · doi:10.1090/conm/456/08886
[88] Martin, Paul, On the representation theory of partial Brauer algebras, Q. J. Math., 225-247 (2014) · Zbl 1354.16016 · doi:10.1093/qmath/has043
[89] Martin, Paul P., The decomposition matrices of the Brauer algebra over the complex field, Trans. Amer. Math. Soc., 1797-1825 (2015) · Zbl 1362.16020 · doi:10.1090/S0002-9947-2014-06163-1
[90] Mazorchuk, Volodymyr, On the structure of {B}rauer semigroup and its partial analogue, Problems in Algebra, 29\ndash 45 pp. (1998)
[91] Mitchell, J. D., Semigroups - gap package, version 3.2.0 (2019) · doi:10.5281/zenodo.592893
[92] Murasugi, Kunio, A study of braids, Mathematics and its Applications, x+272 pp. (1999), Kluwer Academic Publishers, Dordrecht · Zbl 0938.57001 · doi:10.1007/978-94-015-9319-9
[93] Nordahl, T. E., Regular \(\ast \)-semigroups, Semigroup Forum, 369-377 (1978) · Zbl 0408.20043 · doi:10.1007/BF02194636
[94] Okni\'{n}ski, Jan, Semigroups of matrices, Series in Algebra, xiv+311 pp. (1998), World Scientific Publishing Co., Inc., River Edge, NJ · Zbl 0911.20042 · doi:10.1142/9789812816290
[95] Scheiblich, H. E., Concerning congruences on symmetric inverse semigroups, Czechoslovak Math. J., 1-10 (1973) · Zbl 0259.20053
[96] Solomon, Louis, Representations of the rook monoid, J. Algebra, 309-342 (2002) · Zbl 1034.20056 · doi:10.1016/S0021-8693(02)00004-2
[97] Stroppel, Catharina, Categorification of the Temperley-Lieb category, tangles, and cobordisms via projective functors, Duke Math. J., 547-596 (2005) · Zbl 1112.17010 · doi:10.1215/S0012-7094-04-12634-X
[98] \v{S}utov, \`E. G., Homomorphisms of the semigroup of all partial transformations, Izv. Vys\v{s}. U\v{c}ebn. Zaved. Matematika, 177-184 (1961) · Zbl 0101.01405
[99] \v{S}utov, \`E. G., Semigroups of one-to-one transformations, Dokl. Akad. Nauk SSSR, 1026-1028 (1961) · Zbl 0112.25603
[100] Temperley, H. N. V., Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem, Proc. Roy. Soc. London Ser. A, 251-280 (1971) · Zbl 0211.56703 · doi:10.1098/rspa.1971.0067
[101] Turaev, V. G., Operator invariants of tangles, and \(R\)-matrices, Math. USSR-Izv.. Izv. Akad. Nauk SSSR Ser. Mat., 1073-1107, 1135 (1989) · Zbl 0707.57003 · doi:10.1070/IM1990v035n02ABEH000711
[102] Van Oystaeyen, Fred, The Brauer group of a braided monoidal category, J. Algebra, 96-128 (1998) · Zbl 0909.18005 · doi:10.1006/jabr.1997.7295
[103] Wenzl, Hans, On the structure of Brauer’s centralizer algebras, Ann. of Math. (2), 173-193 (1988) · Zbl 0656.20040 · doi:10.2307/1971466
[104] Wilcox, Stewart, Cellularity of diagram algebras as twisted semigroup algebras, J. Algebra, 10-31 (2007) · Zbl 1154.16021 · doi:10.1016/j.jalgebra.2006.10.016
[105] Xi, Changchang, Partition algebras are cellular, Compositio Math., 99-109 (1999) · Zbl 0939.16006 · doi:10.1023/A:1001776125173
[106] Yang, Hao Bo, Maximal subsemigroups of finite transformation semigroups \(K(n,r)\), Acta Math. Sin. (Engl. Ser.), 475-482 (2004) · Zbl 1061.20058 · doi:10.1007/s10114-004-0367-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.