×

Hochschild homology in a braided tensor category. (English) Zbl 0814.18003

This paper is devoted to Hochschild homology of so-called \(r\)-algebras, i.e., algebras which are equipped with a Yang-Baxter operator \(R : A \otimes A \to A \otimes A\). The main source of examples of such algebras are algebras in braided tensor categories, and in fact any \(r\)-algebra can be obtained in that way.
The author first reviews the basic notions and results from the theory of braided tensor categories and algebras in these categories. In particular, he constructs the opposite algebra to such an algebra and the tensor product of two such algebras. Having these results at hand, one can form for an algebra \(A\) in a braided tensor category the algebra \(A^ e : = A \otimes A^{op}\), where \(A^{op}\) is the opposite algebra (in the braided sense) and the tensor product is the braided one. The original algebra \(A\) is canonically a left module over \(A^ e\), and in case that it is weakly \(r\)-commutative, i.e., \(\mu \circ R \circ R = \mu\), where \(\mu\) denotes the multiplication in \(A\), it is also a right module over \(A^ e\). Next, the author defines a flat resolution of \(A\) analogous to the standard acyclic Hochschild complex. If \(A\) is weakly \(r\)-commutative, he uses this to construct an analogue of the standard Hochschild complex, thus arriving at a definition of Hochschild homology.
Then he constructs the braided analog of the shuffle product and discusses relations between braided Hochschild homology and braided differential forms.
Reviewer: A.Cap (Wien)

MSC:

18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
46L85 Noncommutative topology
46L87 Noncommutative differential geometry
16E40 (Co)homology of rings and associative algebras (e.g., Hochschild, cyclic, dihedral, etc.)
16W30 Hopf algebras (associative rings and algebras) (MSC2000)
18G60 Other (co)homology theories (MSC2010)
Full Text: DOI

References:

[1] John C. Baez, \?-commutative geometry and quantization of Poisson algebras, Adv. Math. 95 (1992), no. 1, 61 – 91. · Zbl 0785.46057 · doi:10.1016/0001-8708(92)90044-L
[2] John C. Baez, Differential calculi on quantum vector spaces with Hecke-type relations, Lett. Math. Phys. 23 (1991), no. 2, 133 – 141. · Zbl 0753.17016 · doi:10.1007/BF00703726
[3] Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. · Zbl 0075.24305
[4] Alain Connes, Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math. 62 (1985), 257 – 360. · Zbl 0592.46056
[5] P. Deligne and J. Milne, Tannakian categories, Lecture Notes in Math., vol. 900, Springer, New York, 1982. · Zbl 0477.14004
[6] V. G. Drinfel\(^{\prime}\)d, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 798 – 820.
[7] N. Yu. Reshetikhin, L. A. Takhtadzhyan, and L. D. Faddeev, Quantization of Lie groups and Lie algebras, Algebra i Analiz 1 (1989), no. 1, 178 – 206 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 1, 193 – 225. · Zbl 0715.17015
[8] Ping Feng and Boris Tsygan, Hochschild and cyclic homology of quantum groups, Comm. Math. Phys. 140 (1991), no. 3, 481 – 521. · Zbl 0743.17020
[9] J. Fröhlich and F. Gabbiani, Braid group statistics in local quantum theory, preprint. · Zbl 0723.57002
[10] Peter J. Freyd and David N. Yetter, Braided compact closed categories with applications to low-dimensional topology, Adv. Math. 77 (1989), no. 2, 156 – 182. · Zbl 0679.57003 · doi:10.1016/0001-8708(89)90018-2
[11] G. Hochschild, Bertram Kostant, and Alex Rosenberg, Differential forms on regular affine algebras, Trans. Amer. Math. Soc. 102 (1962), 383 – 408. · Zbl 0102.27701
[12] A. Joyal and R. Street, Braided monoidal categories, Mathematics Reports 86008, Macquarie University, 1986. · Zbl 0817.18007
[13] André Joyal and Ross Street, The geometry of tensor calculus. I, Adv. Math. 88 (1991), no. 1, 55 – 112. · Zbl 0738.18005 · doi:10.1016/0001-8708(91)90003-P
[14] Max Karoubi, Homologie cyclique et \?-théorie, Astérisque 149 (1987), 147 (French, with English summary). · Zbl 0648.18008
[15] L. Kauffman, On knots, Princeton Univ. Press, Princeton, N.J., 1986.
[16] -, Knots and physics, World Scientific, New Jersey, 1991. · Zbl 0733.57004
[17] V. V. Lyubashenko, Hopf algebras and vector-symmetries, Uspekhi Mat. Nauk 41 (1986), no. 5(251), 185 – 186 (Russian). · Zbl 0649.16008
[18] Saunders Mac Lane, Natural associativity and commutativity, Rice Univ. Studies 49 (1963), no. 4, 28 – 46. · Zbl 0244.18008
[19] Shahn Majid, Quasitriangular Hopf algebras and Yang-Baxter equations, Internat. J. Modern Phys. A 5 (1990), no. 1, 1 – 91. · Zbl 0709.17009 · doi:10.1142/S0217751X90000027
[20] Yu. I. Manin, Quantum groups and noncommutative geometry, Université de Montréal, Centre de Recherches Mathématiques, Montreal, QC, 1988. · Zbl 0724.17006
[21] -, Topics in noncommutative geometry, Princeton Univ. Press, Princeton, N.J., 1991. · Zbl 0724.17007
[22] W. Pusz, Twisted canonical anticommutation relations, Rep. Math. Phys. 27 (1989), no. 3, 349 – 360. · Zbl 0752.17035 · doi:10.1016/0034-4877(89)90017-7
[23] W. Pusz and S. L. Woronowicz, Twisted second quantization, Rep. Math. Phys. 27 (1989), no. 2, 231 – 257. · Zbl 0707.47039 · doi:10.1016/0034-4877(89)90006-2
[24] Jean-Louis Loday and Daniel Quillen, Cyclic homology and the Lie algebra homology of matrices, Comment. Math. Helv. 59 (1984), no. 4, 569 – 591. · Zbl 0565.17006 · doi:10.1007/BF02566367
[25] N. Yu. Reshetikhin and V. G. Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990), no. 1, 1 – 26. · Zbl 0768.57003
[26] Marc A. Rieffel, Noncommutative tori — a case study of noncommutative differentiable manifolds, Geometric and topological invariants of elliptic operators (Brunswick, ME, 1988) Contemp. Math., vol. 105, Amer. Math. Soc., Providence, RI, 1990, pp. 191 – 211. · doi:10.1090/conm/105/1047281
[27] N. Saavedra Rivano, Catégories Tannakiennes, Lecture Notes in Math., vol. 265, Springer, Berlin-Heidelberg, 1975. · Zbl 0241.14008
[28] Peter Seibt, Cyclic homology of algebras, World Scientific Publishing Co., Singapore, 1987. · Zbl 0743.16009
[29] B. L. Tsygan, Homology of matrix Lie algebras over rings and the Hochschild homology, Uspekhi Mat. Nauk 38 (1983), no. 2(230), 217 – 218 (Russian). · Zbl 0518.17002
[30] K.-H. Ulbrich, On Hopf algebras and rigid monoidal categories, Israel J. Math. 72 (1990), no. 1-2, 252 – 256. Hopf algebras. · Zbl 0727.16029 · doi:10.1007/BF02764622
[31] Julius Wess and Bruno Zumino, Covariant differential calculus on the quantum hyperplane, Nuclear Phys. B Proc. Suppl. 18B (1990), 302 – 312 (1991). Recent advances in field theory (Annecy-le-Vieux, 1990). · Zbl 0957.46514 · doi:10.1016/0920-5632(91)90143-3
[32] C. N. Yang and M. L. Ge , Braid group, knot theory and statistical mechanics, Advanced Series in Mathematical Physics, vol. 9, World Scientific Publishing Co., Inc., Teaneck, NJ, 1989. · Zbl 0716.00010
[33] Bruno Zumino, Deformation of the quantum mechanical phase space with bosonic or fermionic coordinates, Modern Phys. Lett. A 6 (1991), no. 13, 1225 – 1235. · Zbl 1020.81651 · doi:10.1142/S0217732391001305
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.