×

Noncommutative Bennett and Rosenthal inequalities. (English) Zbl 1290.46056

Summary: In this paper, we extend the Bernstein, Prohorov and Bennett inequalities to the noncommutative setting. In addition, we provide an improved version of the noncommutative Rosenthal inequality, essentially due to S. V. Nagaev and I. F. Pinelis [Theory Probab. Appl. 22(1977), No. 2, 254–263 (1978); translation from Teor. Veroyatn. Primen. 22, 254–263 (1977; Zbl 0378.60036)] and I. F. Pinelis and S. A. Utev [Theory Probab. Appl. 29, 574–577 (1985); translation from Teor. Veroyatn. Primen. 29, No. 3, 554–557 (1984; Zbl 0566.60017)] for commutative random variables. We also present new best constants in Rosenthal’s inequality. Applying these results to random Fourier projections, we recover and elaborate on fundamental results from compressed sensing, due to E. J. Candès, J. K. Romberg and T. Tao [IEEE Trans. Inf. Theory 52, No. 2, 489–509 (2006; Zbl 1231.94017)].

MSC:

46L53 Noncommutative probability and statistics
60E15 Inequalities; stochastic orderings
46L52 Noncommutative function spaces
60F10 Large deviations
94A12 Signal theory (characterization, reconstruction, filtering, etc.)

References:

[1] Ahlswede, R. and Winter, A. (2002). Strong converse for identification via quantum channels. IEEE Trans. Inform. Theory 48 569-579. · Zbl 1071.94530 · doi:10.1109/18.985947
[2] Araki, H. (1973). Golden-Thompson and Peierls-Bogolubov inequalities for a general von Neumann algebra. Comm. Math. Phys. 34 167-178. · Zbl 0274.46048 · doi:10.1007/BF01645678
[3] Bennett, G. (1962). Probability inequalities for the sum of independent random variables. J. Amer. Statist. Assoc. 57 33-45. · Zbl 0104.11905 · doi:10.2307/2282438
[4] Burkholder, D. L. (1973). Distribution function inequalities for martingales. Ann. Probab. 1 19-42. · Zbl 0301.60035 · doi:10.1214/aop/1176997023
[5] Candes, E., Rudelson, M., Tao, T. and Vershynin, R. (2005). Error correction via linear programming. In 46 th Annual IEEE Symposium on Foundations of Computer Science , 2005. FOCS 2005 668-681.
[6] Candès, E. J., Romberg, J. and Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory 52 489-509. · Zbl 1231.94017 · doi:10.1109/TIT.2005.862083
[7] Candes, E. J. and Tao, T. (2005). Decoding by linear programming. IEEE Trans. Inform. Theory 51 4203-4215. · Zbl 1264.94121 · doi:10.1109/TIT.2005.858979
[8] Candes, E. J. and Tao, T. (2006). Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans. Inform. Theory 52 5406-5425. · Zbl 1309.94033 · doi:10.1109/TIT.2006.885507
[9] Cherix, P.-A., Cowling, M., Jolissaint, P., Julg, P. and Valette, A. (2001). Groups with the Haagerup Property : Gromov’s a-T-Menability. Progress in Mathematics 197 . Birkhäuser, Basel. · Zbl 1030.43002
[10] Collins, B. and Junge, M. (2011). What is a noncommutative Brownian motion?
[11] Conway, J. B. (1990). A Course in Functional Analysis , 2nd ed. Graduate Texts in Mathematics 96 . Springer, New York. · Zbl 0706.46003
[12] Dembo, A. and Zeitouni, O. (1998). Large Deviations Techniques and Applications , 2nd ed. Applications of Mathematics ( New York ) 38 . Springer, New York. · Zbl 0896.60013
[13] Dirksen, S. (2011). Noncommutative and vector-valued Rosenthal inequalities. Ph.D. thesis, Delft Univ. Technology. Available at . · Zbl 1267.46076
[14] Dirksen, S., de Pagter, B., Potapov, D. and Sukochev, F. (2011). Rosenthal inequalities in noncommutative symmetric spaces. J. Funct. Anal. 261 2890-2925. · Zbl 1267.46076 · doi:10.1016/j.jfa.2011.07.015
[15] Fack, T. and Kosaki, H. (1986). Generalized \(s\)-numbers of \(\tau\)-measurable operators. Pacific J. Math. 123 269-300. · Zbl 0617.46063 · doi:10.2140/pjm.1986.123.269
[16] Gross, D. (2011). Recovering low-rank matrices from few coefficients in any basis. IEEE Trans. Inform. Theory 57 1548-1566. · Zbl 1366.94103 · doi:10.1109/TIT.2011.2104999
[17] Guţă, M. and Maassen, H. (2002). Generalised Brownian motion and second quantisation. J. Funct. Anal. 191 241-275. · Zbl 1002.60076 · doi:10.1006/jfan.2001.3855
[18] Guţă, M. and Maassen, H. (2002). Symmetric Hilbert spaces arising from species of structures. Math. Z. 239 477-513. · Zbl 1006.81039 · doi:10.1007/s002090100316
[19] Hitczenko, P. (1990). Best constants in martingale version of Rosenthal’s inequality. Ann. Probab. 18 1656-1668. · Zbl 0725.60018 · doi:10.1214/aop/1176990639
[20] Johnson, W. B., Schechtman, G. and Zinn, J. (1985). Best constants in moment inequalities for linear combinations of independent and exchangeable random variables. Ann. Probab. 13 234-253. · Zbl 0564.60020 · doi:10.1214/aop/1176993078
[21] Junge, M. (2002). Doob’s inequality for non-commutative martingales. J. Reine Angew. Math. 549 149-190. · Zbl 1004.46043 · doi:10.1515/crll.2002.061
[22] Junge, M. (2006). Operator spaces and Araki-Woods factors: A quantum probabilistic approach. IMRP Int. Math. Res. Pap. Art. ID 76978, 87. · Zbl 1218.46039 · doi:10.1155/IMRP/2006/76978
[23] Junge, M. and Xu, Q. (2003). Noncommutative Burkholder/Rosenthal inequalities. Ann. Probab. 31 948-995. · Zbl 1041.46050 · doi:10.1214/aop/1048516542
[24] Junge, M. and Xu, Q. (2005). On the best constants in some non-commutative martingale inequalities. Bull. Lond. Math. Soc. 37 243-253. · Zbl 1088.46037 · doi:10.1112/S0024609304003947
[25] Junge, M. and Xu, Q. (2008). Noncommutative Burkholder/Rosenthal inequalities. II. Applications. Israel J. Math. 167 227-282. · Zbl 1217.46043 · doi:10.1007/s11856-008-1048-4
[26] Krahmer, F., Mendelson, S. and Rauhut, H. (2012). Suprema of chaos processes and the restricted isometry property. Available at . 1207.0235 · Zbl 1310.94024
[27] Kwapień, S. and Woyczyński, W. A. (1989). Tangent sequences of random variables: Basic inequalities and their applications. In Almost Everywhere Convergence ( Columbus , OH , 1988) 237-265. Academic Press, Boston, MA. · Zbl 0693.60033
[28] Lieb, E. H. (1973). Convex trace functions and the Wigner-Yanase-Dyson conjecture. Adv. Math. 11 267-288. · Zbl 0267.46055 · doi:10.1016/0001-8708(73)90011-X
[29] Lust-Piquard, F. (1986). Inégalités de Khintchine dans \(C_{p}\) (\(1<p<\infty\)). C. R. Acad. Sci. Paris Sér. I Math. 303 289-292. · Zbl 0592.47038
[30] Lust-Piquard, F. and Pisier, G. (1991). Noncommutative Khintchine and Paley inequalities. Ark. Mat. 29 241-260. · Zbl 0755.47029 · doi:10.1007/BF02384340
[31] Mackey, L., Jordan, M. I., Chen, R. Y., Farrell, B. and Tropp, J. A. (2012). Matrix concentration inequalities via the method of exchangeable pairs. Available at . 1201.6002 · Zbl 1294.60008
[32] Nagaev, S. V. and Pinelis, I. F. (1978). Some inequalities for the distribution of sums of independent random variables. Theory Probab. Appl. 22 248-256.
[33] Oliveira, R. I. (2009). Concentration of the adjacency matrix and of the Laplacian in random graphs with independent edges. Available at . 0911.0600
[34] Pinelis, I. (1994). Optimum bounds for the distributions of martingales in Banach spaces. Ann. Probab. 22 1679-1706. · Zbl 0836.60015 · doi:10.1214/aop/1176988477
[35] Pinelis, I. F. and Utev, S. A. (1985). Estimates of moments of sums of independent random variables. Theory Probab. Appl. 29 574-577. · Zbl 0566.60017 · doi:10.1137/1129075
[36] Pisier, G. (1998). Non-commutative vector valued \(L_{p}\)-spaces and completely \(p\)-summing maps. Astérisque 247 vi+131. · Zbl 0937.46056
[37] Pisier, G. (2003). Introduction to Operator Space Theory. London Mathematical Society Lecture Note Series 294 . Cambridge Univ. Press, Cambridge. · Zbl 1093.46001
[38] Pisier, G. and Xu, Q. (1997). Non-commutative martingale inequalities. Comm. Math. Phys. 189 667-698. · Zbl 0898.46056 · doi:10.1007/s002200050224
[39] Prohorov, Y. V. (1959). An extremal problem in probability theory. Theory Probab. Appl. 4 201-203. · Zbl 0093.15102 · doi:10.1137/1104017
[40] Randrianantoanina, N. (2007). Conditioned square functions for noncommutative martingales. Ann. Probab. 35 1039-1070. · Zbl 1155.46034 · doi:10.1214/009117906000000656
[41] Rauhut, H. (2010). Compressive sensing and structured random matrices. In Theoretical Foundations and Numerical Methods for Sparse Recovery. Radon Ser. Comput. Appl. Math. 9 1-92. de Gruyter, Berlin. · Zbl 1208.15027
[42] Rosenthal, H. P. (1970). On the subspaces of \(L^{p}\) (\(p>2\)) spanned by sequences of independent random variables. Israel J. Math. 8 273-303. · Zbl 0213.19303 · doi:10.1007/BF02771562
[43] Rudelson, M. and Vershynin, R. (2008). On sparse reconstruction from Fourier and Gaussian measurements. Comm. Pure Appl. Math. 61 1025-1045. · Zbl 1149.94010 · doi:10.1002/cpa.20227
[44] Ruskai, M. B. (1972). Inequalities for traces on von Neumann algebras. Comm. Math. Phys. 26 280-289. · Zbl 0257.46101 · doi:10.1007/BF01645523
[45] Simon, B. (2005). Trace Ideals and Their Applications , 2nd ed. Mathematical Surveys and Monographs 120 . Amer. Math. Soc., Providence, RI. · Zbl 1074.47001
[46] Temme, N. M. (1996). Special Functions : An Introduction to the Classical Functions of Mathematical Physics . Wiley, New York. · Zbl 0856.33001
[47] Tropp, J. (2012). User-friendly tail bounds for sums of random matrices. Found. Comput. Math. 12 389-434. · Zbl 1259.60008 · doi:10.1007/s10208-011-9099-z
[48] Voiculescu, D. V., Dykema, K. J. and Nica, A. (1992). Free Random Variables : A Noncommutative Probability Approach to Free Products with Applications to Random Matrices , Operator Algebras and Harmonic Analysis on Free Groups. CRM Monograph Series 1 . Amer. Math. Soc., Providence, RI. · Zbl 0795.46049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.