×

Pinned solutions in a heterogeneous three-component FitzHugh-Nagumo model. (English) Zbl 1415.35018

This article presents an analysis of a singularly perturbed three-component FitzHugh-Nagumo model with a small jump-type heterogeneity. The authors consider pinned front solutions and pulse solutions for the model problem. Explicit conditions for the existence and stability of the pinned front solutions are demonstrated. For this, geometric singular perturbation techniques with an action functional approach are employed (the interested reader should also see [A. Doelman et al., SIAM J. Appl. Dyn. Syst. 15, No. 2, 655–712 (2016; Zbl 1343.34041)]). One novelty in this article is the determination of particular parameter ranges where one can explicitly compute the pinning distance of a local defect solution. It should also be mentioned that local defect solutions were investigated numerically in [P. van Heijster et al., Nonlinearity 24, No. 1, 127–157 (2011; Zbl 1208.35010)].

MSC:

35B25 Singular perturbations in context of PDEs
35B35 Stability in context of PDEs
35K57 Reaction-diffusion equations
49J40 Variational inequalities
34A34 Nonlinear ordinary differential equations and systems
34A36 Discontinuous ordinary differential equations
34C37 Homoclinic and heteroclinic solutions to ordinary differential equations

References:

[1] Benson, D., Sherrat, J., Maini, P.: Diffusion driven instability in an inhomogeneous domain. Bull. Math. Biol. 55, 365-384 (1993) · Zbl 0758.92003 · doi:10.1007/BF02460888
[2] Bode, M., Liehr, A.W., Schenk, C.P., Purwins, H.G.: Interaction of dissipative solitons: particle-like behaviour of localized structures in a three-component reaction – diffusion system. Physica D 161, 45-66 (2002) · Zbl 0985.35096 · doi:10.1016/S0167-2789(01)00360-8
[3] Brazhnik, P., Tyson, J.: Steady-state autowave patterns in a two-dimensional excitable medium with a band of different excitability. Physica D 102, 300-312 (1997) · Zbl 0904.92001 · doi:10.1016/S0167-2789(96)00182-0
[4] Carr, J., Pego, R.L.: Metastable patterns in solutions of \[u_t= \varepsilon^2 u_{xx} - f(u)\] ut=ε2uxx-f(u). Commun. Pure Appl. Math. 42, 523-576 (1989) · Zbl 0685.35054 · doi:10.1002/cpa.3160420502
[5] Chen, C.N., Choi, Y.S.: Standing pulse solutions to FitzHugh-Nagumo equations. Arch. Ration. Mech. Anal. 206, 741-777 (2012) · Zbl 1264.35119 · doi:10.1007/s00205-012-0542-3
[6] Chen, C.N., Choi, Y.S.: Traveling pulse solutions to FitzHugh-Nagumo equations. Calc. Var. Partial Differ. Equ. 54, 1-45 (2015) · Zbl 1328.34037 · doi:10.1007/s00526-014-0776-z
[7] Chen, C.N., Hu, X.: Maslov index for homoclinic orbits of Hamiltonian systems. Ann. I. H. Poincare-An. 24, 589-603 (2007) · Zbl 1202.37081 · doi:10.1016/j.anihpc.2006.06.002
[8] Chen, C.N., Hu, X.: Stability criteria for reaction – diffusion systems with skew-gradient structure. Commun. Partial Differ. Equ. 33, 189-208 (2008) · Zbl 1171.35064 · doi:10.1080/03605300601188755
[9] Chen, C.N., Hu, X.: Stability analysis for standing pulse solutions to FitzHugh-Nagumo equations. Calc. Var. Partial Differ. Equ. 49, 827-845 (2014) · Zbl 1315.35030 · doi:10.1007/s00526-013-0601-0
[10] Chen, C.N., Kung, S.Y., Morita, Y.: Planar standing wavefronts in the FitzHugh-Nagumo equations. SIAM J. Math. Anal. 46, 657-690 (2014) · Zbl 1301.34060 · doi:10.1137/130907793
[11] Chen, C.N., Séré, E.: Multiple front standing waves in the Fitzhugh-Nagumo equations. arXiv:1804.01727 (2018) · Zbl 1490.34050
[12] Chen, C.N., Tanaka, K.: A variational approach for standing waves of FitzHugh-Nagumo type systems. J. Differ. Equ. 257, 109-144 (2014) · Zbl 1292.35117 · doi:10.1016/j.jde.2014.03.013
[13] Chen, C.N., Tzeng, Sy: Existence and multiplicity results for heteroclinic orbits of second order Hamiltonian systems. J. Differ. Equ. 158, 211-250 (1999) · Zbl 0973.37038 · doi:10.1006/jdeq.1999.3633
[14] Chen, C.N., Tzeng, Sy: Periodic solutions and their connecting orbits of Hamiltonian systems. J. Differ. Equ. 177, 121-145 (2001) · Zbl 1087.37051 · doi:10.1006/jdeq.2000.3996
[15] Chirilus-Bruckner, M., Doelman, A., van Heijster, P., Rademacher, J.D.M.: Butterfly catastrophe for fronts in a three-component reaction – diffusion system. J. Nonlinear Sci. 25, 87-129 (2015) · Zbl 1325.35088 · doi:10.1007/s00332-014-9222-9
[16] Corwin, L., Szczarba, R.H.: Multivariable Calculus, Monographs and Textbooks in Pure and Applied Mathematics, vol. 64. Marcel Dekker, Inc., New York City (1982) · Zbl 0494.26003
[17] Derks, G.: Stability of fronts in inhomogeneous wave equations. Acta Appl. Math. 137, 61-78 (2014) · Zbl 1320.35134 · doi:10.1007/s10440-014-9991-z
[18] Derks, G., Doelman, A., Knight, C., Susanto, H.: Pinned fluxons in a Josephson junction with a finite-length inhomogeneity. Eur. J. Appl. Math. 23, 201-244 (2012) · Zbl 1245.82086 · doi:10.1017/S0956792511000301
[19] Doedel, E.J.: Lecture notes on numerical analysis of nonlinear equations. In: Krauskopf, B., Osinga, H.M., Galán-Vioque, J. (eds.) Numerical Continuation Methods for dynamical systems, Und. Com. Sys., pp. 1-49. Springer, Berlin (2007) · Zbl 1130.65119
[20] Doelman, A., Gardner, R.A., Kaper, T.J.: Stability analysis of singular patterns in the 1D Gray-Scott model: a matched asymptotics approach. Physica D 122, 1-36 (1998) · Zbl 0943.34039 · doi:10.1016/S0167-2789(98)00180-8
[21] Doelman, A., Gardner, R.A., Kaper, T.J.: Large stable pulse solutions in reaction – diffusion equations. Indiana Univ. Math. J. 50, 443-507 (2001) · Zbl 0994.35058 · doi:10.1512/iumj.2001.50.1873
[22] Doelman, A., Gardner, R.A., Kaper, T.J.: A stability index analysis of 1-D patterns of the Gray-Scott model. Mem. Am. Math. Soc. 155, xii+64 (2002) · Zbl 0994.35059
[23] Doelman, A., van Heijster, P., Kaper, T.: Pulse dynamics in a three-component system: existence analysis. J. Dyn. Differ. Equ. 21, 73-115 (2009) · Zbl 1173.35068 · doi:10.1007/s10884-008-9125-2
[24] Doelman, A., van Heijster, P., Xie, F.: A geometric approach to stationary defect solutions in one space dimension. SIAM J. Appl. Dyn. Syst. 15, 655-712 (2016) · Zbl 1343.34041 · doi:10.1137/15M1026742
[25] Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53-98 (1979) · Zbl 0476.34034 · doi:10.1016/0022-0396(79)90152-9
[26] Fusco, G., Hale, J.K.: Slow-motion manifolds, dormant instability, and singular perturbations. J. Dyn. Differ. Equ. 1, 75-94 (1989) · Zbl 0684.34055 · doi:10.1007/BF01048791
[27] Goldobin, E., Vogel, K., Crasser, O., Walser, R., Schleich, W., Koelle, D., Kleiner, R.: Quantum tunneling of semifluxons in a \[0-\pi\] π-0 long Josephson junction. Phys. Rev. B 72, 054 527 (2005) · doi:10.1103/PhysRevB.72.054527
[28] Gurevich, S.V., Amiranashvili, S., Purwins, H.G.: Breathing dissipative solitons in three-component reaction – diffusion system. Phys. Rev. E 74, 066 201 (2006) · doi:10.1103/PhysRevE.74.066201
[29] Holmes, M.H.: Introduction to Perturbation Methods. Springer Science & Business Media, Berlin (2012)
[30] Ikeda, H., Ei, S.I.: Front dynamics in heterogeneous diffusive media. Physica D 239, 1637-1649 (2010) · Zbl 1207.37041 · doi:10.1016/j.physd.2010.04.008
[31] Jones, C.K.R.T.: Geometric singular perturbation theory. In: Johnson, R. (ed.) Dynamical Systems (Montecatini Terme, 1994), Lecture Notes in Mathematics, vol. 1609, pp. 44-118. Springer, Berlin (1995) · Zbl 0840.58040
[32] Kaper, T.J.: An introduction to geometric methods and dynamical systems theory for singular perturbation problems. In: O’Malley, R.E., Cronin, J. (eds.) Analyzing Multiscale Phenomena Using Singular Perturbation Methods (Baltimore, MD, 1998), Proceedings of Symposia in Applied Mathematics, vol. 56, pp. 85-131. American Mathematical Society, Providence, RI (1999)
[33] Keller, H.B.: Numerical solution of bifurcation and nonlinear eigenvalue problems. In: Rabinowitz, P. (ed.) Applications of Bifurcation Theory, vol. 38, pp. 359-384. Academic Press, New York (1977) · Zbl 0581.65043
[34] Knight, C., Derks, G., Doelman, A., Susanto, H.: Stability of stationary fronts in a non-linear wave equation with spatial inhomogeneity. J. Differ. Equ. 254, 408-468 (2013) · Zbl 1259.35029 · doi:10.1016/j.jde.2012.08.007
[35] Marangell, R., Jones, C., Susanto, H.: Localized standing waves in inhomogeneous Schrödinger equations. Nonlinearity 23, 2059-2080 (2010) · Zbl 1203.37118 · doi:10.1088/0951-7715/23/9/002
[36] Marangell, R., Susanto, H., Jones, C.: Unstable gap solitons in inhomogeneous nonlinear Schrödinger equations. J. Differ. Equ. 253, 1191-1205 (2012) · Zbl 1278.35231 · doi:10.1016/j.jde.2012.04.010
[37] McLaughlin, D., Scott, A.: Perturbation analysis of fluxon dynamics. Phys. Rev. A 18, 1652-1680 (1978) · doi:10.1103/PhysRevA.18.1652
[38] Nishi, K., Nishiura, Y., Teramoto, T.: Dynamics of two interfaces in a hybrid system with jump-type heterogeneity. Jpn. J. Ind. Appl. Math. 30, 351-395 (2013) · Zbl 1384.37102 · doi:10.1007/s13160-013-0100-x
[39] Nishiura, Y., Teramoto, T., Ueda, K.I.: Dynamic transitions through scattors in dissipative systems. Chaos 13, 962-972 (2003) · doi:10.1063/1.1592131
[40] Nishiura, Y., Teramoto, T., Ueda, K.I.: Scattering and separators in dissipative systems. Phys. Rev. E 67, 056 210 (2003) · doi:10.1103/PhysRevE.67.056210
[41] Nishiura, Y., Teramoto, T., Yuan, X., Ueda, K.I.: Dynamics of traveling pulses in heterogeneous media. Chaos 17, 037 104 (2007) · Zbl 1163.37356 · doi:10.1063/1.2778553
[42] Or-Guil, M., Bode, M., Schenk, C.P., Purwins, H.G.: Spot bifurcations in three-component reaction – diffusion systems: the onset of propagation. Phys. Rev. E 57, 6432-6437 (1998) · doi:10.1103/PhysRevE.57.6432
[43] Pegrum, C.: Can a fraction of a quantum be better than a whole one? Science 312, 6432-6437 (2006) · doi:10.1126/science.1128569
[44] Promislow, K.: A renormalization method for modulational stability of quasi-steady patterns in dispersive systems. SIAM J. Math. Anal. 33, 1455-1482 (2002) · Zbl 1019.34057 · doi:10.1137/S0036141000377547
[45] Rabinowitz, P.H.: On bifurcation from infinity. J. Differ. Equ. 14, 462-475 (1973) · Zbl 0272.35017 · doi:10.1016/0022-0396(73)90061-2
[46] Rademacher, J.D.M.: First and second order semi-strong interaction in reaction – diffusion systems. SIAM J. Appl. Dyn. Syst. 12, 175-203 (2013) · Zbl 1282.35029 · doi:10.1137/110850165
[47] Robinson, C.: Sustained resonance for a nonlinear system with slowly-varying coefficients. SIAM J. Math. Anal. 14, 847-860 (1983) · Zbl 0523.34035 · doi:10.1137/0514066
[48] Schenk, C.P., Or-Guil, M., Bode, M., Purwins, H.G.: Interacting pulses in three-component reaction – diffusion systems on two-dimensional domains. Phys. Rev. Lett. 78, 3781-3784 (1997) · doi:10.1103/PhysRevLett.78.3781
[49] Seydel, R.: Practical Bifurcation and Stability Analysis. Interdisciplinary Applied Mathematics, vol. 5. Springer, New York (2010) · Zbl 1195.34004
[50] Teramoto, T., Yuan, X., Bär, M., Nishiura, Y.: Onset of unidirectional pulse propagation in an excitable medium with asymmetric heterogeneity. Phys. Rev. E 79, 046 205 (2009) · doi:10.1103/PhysRevE.79.046205
[51] Vanag, V.K., Epstein, I.R.: Localized patterns in reaction – diffusion systems. Chaos 17, 037 110 (2007) · Zbl 1163.37381 · doi:10.1063/1.2752494
[52] van Heijster, P., Chen, C.N., Nishiura, Y., Teramoto, T.: Localized patterns in a three-component FitzHugh-Nagumo model revisited via an action functional. J. Dyn. Differ. Equ. 30, 521-555 (2016) · Zbl 1402.35026
[53] van Heijster, P., Doelman, A., Kaper, T.: Pulse dynamics in a three-component system: stability and bifurcations. Physica D 237, 3335-3368 (2008) · Zbl 1153.37437 · doi:10.1016/j.physd.2008.07.014
[54] van Heijster, P., Doelman, A., Kaper, T., Nishiura, Y., Ueda, K.I.: Pinned fronts in heterogeneous media of jump type. Nonlinearity 24, 127-157 (2011) · Zbl 1208.35010 · doi:10.1088/0951-7715/24/1/007
[55] van Heijster, P., Doelman, A., Kaper, T.J., Promislow, K.: Front interactions in a three-component system. SIAM J. Appl. Dyn. Syst. 9, 292-332 (2010) · Zbl 1197.35047 · doi:10.1137/080744785
[56] van Heijster, P., Sandstede, B.: Planar radial spots in a three-component FitzHugh-Nagumo system. J. Nonlinear Sci. 21, 705-745 (2011) · Zbl 1233.35012 · doi:10.1007/s00332-011-9098-x
[57] van Heijster, P., Sandstede, B.: Coexistence of stable spots and fronts in a three-component FitzHugh-Nagumo system. RIMS Kokyuroku Bessatsu B31, 135-155 (2012) · Zbl 1258.35123
[58] van Heijster, P., Sandstede, B.: Bifurcations to travelling planar spots in a three-component FitzHugh-Nagumo system. Physica D 275, 19-34 (2014) · Zbl 1341.37029 · doi:10.1016/j.physd.2014.02.001
[59] Ward, M.J., McInerney, D., Houston, P., Gavaghan, D., Maini, P.: The dynamics and pinning of a spike for a reaction – diffusion system. SIAM J. Appl. Math. 62, 1297-1328 (2002) · Zbl 1032.35029 · doi:10.1137/S0036139900375112
[60] Wei, J., Winter, M.: Spikes for the Gierer-Meinhardt system with discontinuous diffusion coefficients. J. Nonlinear Sci. 19, 301-339 (2009) · Zbl 1183.35021 · doi:10.1007/s00332-008-9036-8
[61] Yadome, M., Nishiura, Y., Teramoto, T.: Robust pulse generators in an excitable medium with jump-type heterogeneity. SIAM J. Appl. Dyn. Syst. 13, 1168-1201 (2014) · Zbl 1331.35040 · doi:10.1137/13091261X
[62] Yuan, X., Teramoto, T., Nishiura, Y.: Heterogeneity-induced defect bifurcation and pulse dynamics for a three-component reaction – diffusion system. Phys. Rev. E 75, 036 220 (2007) · doi:10.1103/PhysRevE.75.036220
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.