×

A variational approach for standing waves of Fitzhugh-Nagumo type systems. (English) Zbl 1292.35117

This paper establishes the existence of radially symmetric entire solutions for a class of Fitzhugh-Nagumo systems. The authors are concerned with solutions decaying to zero at infinity, and the study is developed by studying the qualitative properties of the associated energy functional. The proof combines minimax arguments with a truncation technique. In such a way the authors obtain both positive and nodal solutions.

MSC:

35J47 Second-order elliptic systems
35J50 Variational methods for elliptic systems
35B08 Entire solutions to PDEs
Full Text: DOI

References:

[1] Amann, H., Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18, 620-709 (1976) · Zbl 0345.47044
[2] Azzollini, A.; d’Avenia, P.; Pomponio, A., Multiple critical points for a class of nonlinear functionals, Ann. Mat. Pura Appl. (4), 190, 3, 507-523 (2011) · Zbl 1230.58014
[3] Bartsch, T.; de Valeriola, S., Normalized solutions of nonlinear Schrödinger equations, Arch. Math. (Basel), 100, 1, 75-83 (2013) · Zbl 1260.35098
[4] Berestycki, H.; Lions, P.-L., Une méthode locale pour l’existence de solutions positives de problèmes semi-linéaires elliptiques dans \(R^N\), J. Anal. Math., 38, 144-187 (1980) · Zbl 0518.35034
[5] Berestycki, H.; Lions, P.-L., Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal., 82, 4, 313-345 (1983) · Zbl 0533.35029
[6] Berestycki, H.; Lions, P.-L., Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Ration. Mech. Anal., 82, 4, 347-375 (1983) · Zbl 0556.35046
[7] Berestycki, H.; Gallouët, T.; Kavian, O., Équations de champs scalaires euclidiens non linéaires dans le plan, C. R. Acad. Sci. Paris Ser. I Math., 297, 5, 307-310 (1983) · Zbl 0544.35042
[8] Benci, V.; Rabinowitz, P. H., Critical point theorems for indefinite functionals, Invent. Math., 52, 3, 241-273 (1979) · Zbl 0465.49006
[9] Byeon, J., Singularly perturbed nonlinear Dirichlet problems with a general nonlinearity, Trans. Amer. Math. Soc., 362, 4, 1981-2001 (2010) · Zbl 1188.35082
[10] Dancer, E. N.; Yan, S., A minimization problem associated with elliptic systems of FitzHugh-Nagumo type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21, 237-253 (2004) · Zbl 1110.35019
[11] de Figueiredo, D. G.; Mitidieri, E., A maximum principle for an elliptic system and applications to semilinear problems, SIAM J. Math. Anal., 17, 837-849 (1986) · Zbl 0608.35022
[12] FitzHugh, R., Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1, 445-466 (1961)
[13] Hirata, J.; Ikoma, N.; Tanaka, K., Nonlinear scalar field equations in \(R^N\): mountain pass and symmetric mountain pass approaches, Topol. Methods Nonlinear Anal., 35, 253-276 (2010) · Zbl 1203.35106
[14] Jeanjean, L., Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 28, 10, 1633-1659 (1997) · Zbl 0877.35091
[15] Jeanjean, L.; Tanaka, K., A remark on least energy solutions in \(R^N\), Proc. Amer. Math. Soc., 131, 8, 2399-2408 (2003) · Zbl 1094.35049
[16] Klaasen, G. A.; Mitidieri, E., Standing wave solutions of a system derived from the FitzHugh-Nagumo equations for nerve conduction, SIAM J. Math. Anal., 17, 74-83 (1986) · Zbl 0593.35043
[17] Klaasen, G. A.; Troy, W. C., Standing wave solutions of a system of reaction diffusion equations derived from the FitzHugh-Nagumo equations, SIAM J. Appl. Math., 44, 96-110 (1984) · Zbl 0543.35051
[18] Moroz, V.; Van Schaftingen, J., Existence of ground states for a class of nonlinear Choquard equations (2012)
[19] Nagumo, J.; Arimoto, S.; Yoshizawa, S., An active pulse transmission line simulating nerve axon, Proc. IRE, 50, 2061-2070 (1962)
[20] Oshita, Y., On stable nonconstant stationary solutions and mesoscopic patterns for FitzHugh-Nagumo equations in higher dimensions, J. Differential Equations, 188, 110-134 (2003) · Zbl 1036.35083
[21] Rabinowitz, P. H., Periodic solutions of large norm of Hamiltonian systems, J. Differential Equations, 50, 1, 33-48 (1983) · Zbl 0528.58028
[22] Rabinowitz, P. H., Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math., vol. 65 (1986) · Zbl 0609.58002
[23] Reinecke, C.; Sweers, G., A positive solution on \(R^n\) to a system of elliptic equations of FitzHugh-Nagumo type, J. Differential Equations, 153, 292-312 (1999) · Zbl 0929.35042
[24] Wei, J.; Winter, M., Clustered spots in the FitzHugh-Nagumo system, J. Differential Equations, 213, 121-145 (2005) · Zbl 1330.35022
[25] Wei, J.; Winter, M., Standing waves in the FitzHugh-Nagumo system and a problem in combinatorial geometry, Math. Z., 254, 2, 359-383 (2006) · Zbl 1251.35010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.