×

Analysis of the null controllability of degenerate parabolic systems of Grushin type via the moments method. (English) Zbl 1485.93057

In this paper, authors computed the exact value of the minimal null control time for the Grushin equation controlled on a strip based on the moments method. The approach here is involved in a careful spectral analysis of a truncated harmonic oscillator. The main results also extended some known results on biorthogonal families to real exponentials in the absence of a gap condition to get uniform estimates with respect to the asymptotic behavior of the associated counting function.

MSC:

93B05 Controllability
93C20 Control/observation systems governed by partial differential equations
35K65 Degenerate parabolic equations

Citations:

Zbl 1448.35316

References:

[1] D. Allonsius. Study of spectrum of Sturm-Liouville operators and applications in controllability of discretized and continuous parabolic problems. Phd thesis, Aix Marseille Université, Sept. 2018. https://hal.archives-ouvertes.fr/tel-01887023.
[2] Allonsius, D.; Boyer, F.; Morancey, M., Spectral analysis of discrete elliptic operators and applications in control theory, Numer. Math., 140, 4, 857-911 (2018) · Zbl 1402.34086 · doi:10.1007/s00211-018-0983-1
[3] Ammar-Khodja, F.; Benabdallah, A.; González-Burgos, M.; de Teresa, L., The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials., J. Math. Pures Appl. (9), 96, 6, 555-590 (2011) · Zbl 1237.35085 · doi:10.1016/j.matpur.2011.06.005
[4] Ammar Khodja, F.; Benabdallah, A.; González-Burgos, M.; de Teresa, L., Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences., J. Funct. Anal., 267, 7, 2077-2151 (2014) · Zbl 1304.35379 · doi:10.1016/j.jfa.2014.07.024
[5] Ammar Khodja, F.; Benabdallah, A.; González-Burgos, M.; Morancey, M., Quantitative Fattorini-Hautus test and minimal null control time for parabolic problems., J. Math. Pures Appl. (9), 122, 198-234 (2019) · Zbl 1405.93032 · doi:10.1016/j.matpur.2018.05.006
[6] Beauchard, K.; Cannarsa, P.; Guglielmi, R., Null controllability of Grushin-type operators in dimension two, J. Eur. Math. Soc. (JEMS), 16, 1, 67-101 (2014) · Zbl 1293.35148 · doi:10.4171/JEMS/428
[7] K. Beauchard, J. Dardé, and S. Ervedoza. Minimal time issues for the observability of Grushin-type equations. working paper or preprint, Jan. 2018. · Zbl 1448.35316
[8] Beauchard, K.; Miller, L.; Morancey, M., 2D Grushin-type equations: minimal time and null controllable data, J. Differential Equations, 259, 11, 5813-5845 (2015) · Zbl 1321.35098 · doi:10.1016/j.jde.2015.07.007
[9] A. Benabdallah, F. Boyer, M. González-Burgos, and G. Olive. Sharp estimates of the one-dimensional boundary control cost for parabolic systems and application to the \(n\)-dimensional boundary null controllability in cylindrical domains. SIAM Journal on Control and Optimization, 52(5):2970-3001,2014. · Zbl 1304.93027
[10] A. Benabdallah, F. Boyer, and M. Morancey. A block moment method to handle spectral condensation phenomenon in parabolic control problems. Ann. H. Lebesgue, 3:717-793, 2020. doi:10.5802/ahl.45. · Zbl 1453.93016
[11] Birkhoff, G.; Rota, G., Ordinary differential equations (1962), Ginn: Introductions to higher mathematics, Ginn · Zbl 0102.29901
[12] Borwein, P.; Erdélyi, T., Polynomials and Polynomial Inequalities (1995), New York: Springer, New York · Zbl 0840.26002 · doi:10.1007/978-1-4612-0793-1
[13] P. Borwein and T. Erdélyi. Generalizations of Müntz’s theorem via a Remez-type inequality for Müntz spaces. Journal of the American Mathematical Society, 10(02):327-350, 1997. · Zbl 0864.41014
[14] F. Boyer. Controllability of linear parabolic equations and systems, 2020. Lecture Notes, https://hal.archives-ouvertes.fr/hal-02470625.
[15] P. Cannarsa, P. Martinez, and J. Vancostenoble. Precise estimates for biorthogonal families under asymptotic gap conditions. Discrete and Continuous Dynamical Systems - Series S, 2018. · Zbl 1466.93017
[16] Cîndea, N.; Micu, S.; Rovenţa, I.; Tucsnak, M., Particle supported control of a fluid-particle system., J. Math. Pures Appl. (9), 104, 2, 311-353 (2015) · Zbl 1319.35182 · doi:10.1016/j.matpur.2015.02.009
[17] R. Dautray and J.-L. Lions. Mathematical analysis and numerical methods for science and technology. Vol. 3. Springer-Verlag, Berlin, 1990. Spectral theory and applications, With the collaboration of Michel Artola and Michel Cessenat, Translated from the French by John C. Amson. · Zbl 0766.47001
[18] M. Duprez and A. Koenig. Control of the Grushin equation: non-rectangular control region and minimal time. ESAIM COCV, 2019. to appear. · Zbl 1447.93025
[19] Duyckaerts, T.; Miller, L., Resolvent conditions for the control of parabolic equations, J. Funct. Anal., 263, 11, 3641-3673 (2012) · Zbl 1268.47050 · doi:10.1016/j.jfa.2012.09.003
[20] Fattorini, HO; Russell, DL, Exact controllability theorems for linear parabolic equations in one space dimension, Archive for Rational Mechanics and Analysis, 43, 4, 272-292 (1971) · Zbl 0231.93003 · doi:10.1007/BF00250466
[21] H. O. Fattorini and D. L. Russell. Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations. Quart. Appl. Math., 32:45-69, 1974/75. · Zbl 0281.35009
[22] Fix, G., Asymptotic eigenvalues of Sturm-Liouville systems, J. Math. Anal. Appl., 19, 519-525 (1967) · Zbl 0153.40401 · doi:10.1016/0022-247X(67)90009-1
[23] M. González Burgos and L. Ouaili. Sharp estimates of the one-dimensional boundary control cost for parabolic systems. to appear in Contemp. Math., Amer. Math. Soc., Providence, RI, 2020., 2019. · Zbl 1458.93028
[24] Harris, B., Asymptotics of eigenvalues for regular sturm-liouville problems, Journal of Mathematical Analysis and Applications, 183, 1, 25-36 (1994) · Zbl 0804.34029 · doi:10.1006/jmaa.1994.1128
[25] Koenig, A., Non-null-controllability of the Grushin operator in 2D, Comptes Rendus Mathématique, 355, 12, 1215-1235 (2017) · Zbl 1377.93044 · doi:10.1016/j.crma.2017.10.021
[26] Lagnese, J., Control of wave processes with distributed controls supported on a subregion, SIAM J. Control Optim., 21, 1, 68-85 (1983) · Zbl 0512.93014 · doi:10.1137/0321004
[27] J. Pöschel and E. Trubowitz. Inverse spectral theory, volume 130 of Pure and Applied Mathematics. Academic Press, Inc., Boston, MA, 1987. · Zbl 0623.34001
[28] Schwartz, L., Étude des sommes d’exponentielles réelles (1943), NUMDAM: Publications de l’Institut de Mathématique de l’Université de Clermont-Ferrand, NUMDAM · Zbl 0061.13601
[29] G. Szegó. Orthogonal polynomials. American Mathematical Society, Providence, R.I., fourth edition, 1975. American Mathematical Society, Colloquium Publications, Vol. XXIII. · Zbl 0305.42011
[30] A. Zettl. Sturm-Liouville theory, volume 121 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2005. · Zbl 1103.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.