×

2d Grushin-type equations: minimal time and null controllable data. (English) Zbl 1321.35098

Summary: We study internal null controllability for degenerate parabolic equations of Grushin-type \(G_\gamma = \partial_{x x}^2 + | x|^{2 \gamma} \partial_{y y}^2\) \((\gamma > 0)\), in the rectangle \((x, y) \in \Omega = (- 1, 1) \times(0, 1)\). Previous works proved that null controllability holds for weak degeneracies (\(\gamma\) small), and fails for strong degeneracies (\(\gamma\) large). Moreover, in the transition regime and with strip shaped control domains, a positive minimal time is required.
In this paper, we work with controls acting on two strips, symmetric with respect to the degeneracy. We give the explicit value of the minimal time and we characterize some initial data that can be steered to zero in time \(T\) (when the system is not null controllable): their regularity depends on the control domain and the time \(T\).
We also prove that, with a control that acts on one strip, touching the degeneracy line \(\{x = 0 \}\), then Grushin-type equations are null controllable in any time \(T > 0\) and for any degeneracy \(\gamma > 0\).
Our approach is based on a precise study of the observability property for the one-dimensional heat equations satisfied by the Fourier coefficients in variable \(y\). This precise study is done, through a transmutation process, on the resulting one-dimensional wave equations, by lateral propagation of energy method.

MSC:

35K65 Degenerate parabolic equations
93B05 Controllability
93B07 Observability
Full Text: DOI

References:

[1] Alabau-Boussouira, F.; Cannarsa, P.; Fragnelli, G., Carleman estimates for degenerate parabolic operators with applications to null controllability, J. Evol. Equ., 6, 2, 161-204 (2006) · Zbl 1103.35052
[2] Allibert, B., Contrôle analytique de l’équation des ondes et de l’équation de Schrödinger sur des surfaces de revolution, Comm. Partial Differential Equations, 23, 9-10, 1493-1556 (1998) · Zbl 0954.35028
[3] Ammar Khodja, F.; Benabdallah, A.; González-Burgos, M.; de Teresa, L., Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences, J. Funct. Anal., 267, 7, 2077-2151 (2014) · Zbl 1304.35379
[4] Ammar Khodja, F.; Benabdallah, A.; González-Burgos, M.; de Teresa, L., Minimal time of controllability of two parabolic equations with disjoint control and coupling domains, C. R. Math. Acad. Sci. Paris, 352, 5, 391-396 (2014) · Zbl 1292.93021
[5] Beauchard, K., Null controllability of Kolmogorov-type equations, Math. Control Signals Systems, 1-32 (2013)
[6] Beauchard, K.; Cannarsa, P.; Guglielmi, R., Null controllability of Grushin-type operators in dimension two, J. Eur. Math. Soc. (JEMS), 16, 1, 67-101 (2014) · Zbl 1293.35148
[7] Beauchard, K.; Cannarsa, P.; Yamamoto, M., Inverse source problem and null controllability for multidimensional parabolic operators of Grushin type, Inverse Probl., 30, 2 (2014), 025006, 26 pp · Zbl 1286.35260
[8] Beauchard, K.; Helffer, B.; Henry, R.; Robbiano, L., Degenerate parabolic operators of Kolmogorov type with a geometric control condition, ESAIM Control Optim. Calc. Var., 21, 2, 487-512 (2015) · Zbl 1311.93042
[9] Cannarsa, P.; de Teresa, L., Controllability of 1-d coupled degenerate parabolic equations, Electron. J. Differential Equations (2009), Paper No. 73, 21 pp · Zbl 1178.35216
[10] Cannarsa, P.; Fragnelli, G.; Rocchetti, D., Null controllability of degenerate parabolic operators with drift, Netw. Heterog. Media, 2, 4, 695-715 (2007), (electronic) · Zbl 1140.93011
[11] Cannarsa, P.; Fragnelli, G.; Rocchetti, D., Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form, J. Evol. Equ., 8, 583-616 (2008) · Zbl 1176.35108
[12] Cannarsa, P.; Martinez, P.; Vancostenoble, J., Persistent regional null controllability for a class of degenerate parabolic equations, Commun. Pure Appl. Anal., 3, 4, 607-635 (2004) · Zbl 1063.35092
[13] Cannarsa, P.; Martinez, P.; Vancostenoble, J., Null controllability of degenerate heat equations, Adv. Differential Equations, 10, 2, 153-190 (2005) · Zbl 1145.35408
[14] Cannarsa, P.; Martinez, P.; Vancostenoble, J., Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., 47, 1, 1-19 (2008) · Zbl 1168.35025
[15] Cannarsa, P.; Martinez, P.; Vancostenoble, J., Carleman estimates and null controllability for boundary-degenerate parabolic operators, C. R. Math. Acad. Sci. Paris, 347, 3-4, 147-152 (2009) · Zbl 1162.35330
[16] Dolecki, S., Observability for the one-dimensional heat equation, Studia Math., 48, 291-305 (1973) · Zbl 0264.35036
[17] Dolecki, S.; Russel, D. L., A general theory of observation and control, SIAM J. Control Optim., 15, 2, 185-220 (1977) · Zbl 0353.93012
[18] Duyckaerts, T.; Zhang, X.; Zuazua, E., On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25, 1, 1-41 (2008) · Zbl 1248.93031
[19] Ervedoza, S.; Zuazua, E., Sharp observability estimates for heat equations, Arch. Ration. Mech. Anal., 202, 3, 975-1017 (2011) · Zbl 1251.93040
[20] Fattorini, H. O.; Russell, D. L., Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Ration. Mech. Anal., 43, 272-292 (1971) · Zbl 0231.93003
[21] Flores, C.; de Teresa, L., Carleman estimates for degenerate parabolic equations with first order terms and applications, C. R. Math. Acad. Sci. Paris, 348, 7-8, 391-396 (2010) · Zbl 1188.35032
[22] Fursikov, A. V.; Imanuvilov, O. Y., Controllability of Evolution Equations, Lecture Notes Series, vol. 34 (1996), Seoul National University, Research Institute of Mathematics, Global Analysis Research Center: Seoul National University, Research Institute of Mathematics, Global Analysis Research Center Seoul · Zbl 0862.49004
[24] Haraux, A., A generalized internal control for the wave equation in a rectangle, J. Math. Anal. Appl., 153, 1, 190-216 (1990) · Zbl 0719.49008
[26] Lebeau, G., Contrôle analytique. I. Estimations a priori, Duke Math. J., 68, 1, 1-30 (1992) · Zbl 0780.93053
[27] Lebeau, G.; Robbiano, L., Contrôle exact de l’équation de la chaleur, Comm. Partial Differential Equations, 20, 1-2, 335-356 (1995) · Zbl 0819.35071
[28] Lions, J.-L., Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1, Recherches en Mathématiques Appliquées, vol. 8 (1988), Masson: Masson Paris · Zbl 0653.93002
[29] Martinez, P.; Raymond, J.-P.; Vancostenoble, J., Regional null controllability of a linearized Crocco-type equation, SIAM J. Control Optim., 42, 2, 709-728 (2003) · Zbl 1037.93013
[30] Martinez, P.; Vancostenoble, J., Carleman estimates for one-dimensional degenerate heat equations, J. Evol. Equ., 6, 2, 325-362 (2006) · Zbl 1179.93043
[31] Miller, L., The control transmutation method and the cost of fast controls, SIAM J. Control Optim., 45, 2, 762-772 (2006), (electronic) · Zbl 1109.93009
[32] Morancey, M., Approximate controllability for a 2D Grushin equation with potential having an internal singularity, Ann. Inst. Fourier (Grenoble) (2015), in press · Zbl 1331.93023
[33] Phung, K.-D., Null controllability of the heat equation as singular limit of the exact controllability of dissipative wave equation under the Bardos-Lebeau-Rauch geometric control condition, Comput. Math. Appl., 44, 10-11, 1289-1296 (2002) · Zbl 1051.93050
[34] Tucsnak, M.; Weiss, G., Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher (2009), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 1188.93002
[35] Vancostenoble, J., Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems, Discrete Contin. Dyn. Syst. Ser. S, 4, 3, 761-790 (2011) · Zbl 1213.93018
[36] Zuazua, E., Exact controllability for semilinear wave equations in one space dimension, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10, 1, 109-129 (1993) · Zbl 0769.93017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.