×

A stabilized multidomain partition of unity approach to solving incompressible viscous flow. (English) Zbl 1507.76092

Summary: In this work we propose a new stabilized approach for solving the incompressible Navier-Stokes equations on fixed overlapping grids. This new approach is based on the partition of unity finite element method, which defines the solution fields as weighted sums of local fields, supported by the different grids. Here, the discrete weak formulation of the problem is re-set in cG(1)cG(1) stabilized form, which has the dual benefit of lowering grid resolution requirements for convection dominated flows and allowing for the use of velocity and pressure discretizations which do not satisfy the inf-sup condition. Additionally, we provide an outline of our implementation within an existing distributed parallel application and identify four key options to improve the code efficiency namely: the use of cache to store mapped quadrature points and basis function gradients, the intersection volume splitting algorithm, the use of lower order quadrature schemes, and tuning the partition weight associated with the interface elements. The new method is shown to have comparable accuracy to the single mesh boundary-fitted version of the same stabilized solver based on three transient flow tests including both 2D and 3D settings, as well as low and moderate Reynolds number flow conditions. Moreover, we demonstrate how the four implementation options have a synergistic effect lowering the residual assembly time by an order of magnitude compared to a naive implementation, and showing good load balancing properties.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs

Software:

CHeart; FEATFLOW; MUMPS

References:

[1] Peskin, C. S., Flow patterns around heart valves: a numerical method, J. Comput. Phys., 10, 2, 252-271 (1972) · Zbl 0244.92002
[2] Zhang, L.; Gerstenberger, A.; Wang, X.; Liu, W. K., Immersed finite element method, Comput. Methods Appl. Mech. Eng., 193, 21-22, 2051-2067 (2004) · Zbl 1067.76576
[3] Zhang, L.; Gay, M., Immersed finite element method for fluid-structure interactions, J. Fluids Struct., 23, 6, 839-857 (2007)
[4] Boffi, D.; Gastaldi, L., A finite element approach for the immersed boundary method, Comput. Struct., 81, 8, 491-501 (2003)
[5] Glowinski, R.; Pan, T.-W.; Periaux, J., A fictitious domain method for Dirichlet problem and applications, Comput. Methods Appl. Mech. Eng., 111, 3-4, 283-303 (1994) · Zbl 0845.73078
[6] Glowinski, R.; Pan, T.-W.; Hesla, T. I.; Joseph, D. D., A distributed Lagrange multiplier/fictitious domain method for particulate flows, Int. J. Multiphase Flow, 25, 5, 755-794 (1999) · Zbl 1137.76592
[7] Wall, W. A.; Gamnitzer, P.; Gerstenberger, A., Fluid-structure interaction approaches on fixed grids based on two different domain decomposition ideas, Int. J. Comput. Fluid Dyn., 22, 6, 411-427 (2008) · Zbl 1184.76732
[8] Van Loon, R.; Anderson, P. D.; De Hart, J.; Baaijens, F. P., A combined fictitious domain/adaptive meshing method for fluid-structure interaction in heart valves, Int. J. Numer. Methods Fluids, 46, 5, 533-544 (2004) · Zbl 1060.76582
[9] Kamensky, D.; Hsu, M.-C.; Yu, Y.; Evans, J. A.; Sacks, M. S.; Hughes, T. J., Immersogeometric cardiovascular fluid-structure interaction analysis with divergence-conforming B-splines, Comput. Methods Appl. Mech. Eng., 314, 408-472 (2017) · Zbl 1439.76077
[10] Gerstenberger, A.; Wall, W. A., An extended finite element method/Lagrange multiplier based approach for fluid-structure interaction, Comput. Methods Appl. Mech. Eng., 197, 19-20, 1699-1714 (2008) · Zbl 1194.76117
[11] Massing, A.; Larson, M. G.; Logg, A., Efficient implementation of finite element methods on nonmatching and overlapping meshes in three dimensions, SIAM J. Scientif. Comput., 35, 1, C23-C47 (2013) · Zbl 1264.65194
[12] Alauzet, F.; Fabrèges, B.; Fernández, M. A.; Landajuela, M., Nitsche-XFEM for the coupling of an incompressible fluid with immersed thin-walled structures, Comput. Methods Appl. Mech. Eng., 301, 300-335 (2016) · Zbl 1423.76201
[13] Schott, B., Stabilized Cut Finite Element Methods for Complex Interface Coupled Flow Problems (2017), Technical University of Munich, (Ph.D. thesis)
[14] Massing, A.; Schott, B.; Wall, W., A stabilized nitsche cut finite element method for the Oseen problem, Comput. Methods Appl. Mech. Engrg., 328, 262-300 (2018) · Zbl 1439.76087
[15] Burman, E.; Frei, S.; Massing, A., Eulerian time-stepping schemes for the non-stationary Stokes equations on time-dependent domains (2019), arXiv preprint arXiv:1910.03054
[16] Verkaik, A.; Hulsen, M.; Bogaerds, A.; van de Vosse, F., An overlapping domain technique coupling spectral and finite elements for fluid flow, Comput. & Fluids, 100, 336-346 (2014) · Zbl 1391.76518
[17] Massing, A.; Larson, M. G.; Logg, A.; Rognes, M., A Nitsche-based cut finite element method for a fluid-structure interaction problem, Commun. Appl. Math. Comput. Sci., 10, 2, 97-120 (2015) · Zbl 1326.74122
[18] Shahmiri, S.; Gerstenberger, A.; Wall, W. A., An XFEM-based embedding mesh technique for incompressible viscous flows, Int. J. Numer. Methods Fluids, 65, 1-3, 166-190 (2011) · Zbl 1428.76103
[19] Schott, B.; Ager, C.; Wall, W. A., Monolithic cut finite element-based approaches for fluid-structure interaction, Int. J. Numer. Methods Eng., 119, 8, 757-796 (2019) · Zbl 07863930
[20] J. Benek, J. Steger, F.C. Dougherty, A flexible grid embedding technique with application to the Euler equations, in: 6th Computational Fluid Dynamics Conference Danvers, 1983, pp. 1944.
[21] Steger, J.; Dougherty, F.; Benek, J., A Chimera grid scheme, (Advances In Grid Generation, vol. ASME FED-5 (1983)), 59-69
[22] Steger, J. L.; Benek, J. A., On the use of composite grid schemes in computational aerodynamics, Comput. Methods Appl. Mech. Eng., 64, 1-3, 301-320 (1987) · Zbl 0607.76061
[23] Balmus, M.; Massing, A.; Hoffman, J.; Razavi, R.; Nordsletten, D. A., A partition of unity approach to fluid mechanics and fluid-structure interaction, Comput. Methods Appl. Mech. Eng., 362, Article 112842 pp. (2020) · Zbl 1439.76048
[24] Karniadakis, G.; Sherwin, S., Spectral/Hp Element Methods For Computational Fluid Dynamics (2013), Oxford University Press · Zbl 1256.76003
[25] Xu, H.; Cantwell, C. D.; Monteserin, C.; Eskilsson, C.; Engsig-Karup, A. P.; Sherwin, S. J., Spectral/hp element methods: Recent developments, applications, and perspectives, J. Hydrodyn., 30, 1, 1-22 (2018)
[26] Brooks, A. N.; Hughes, T. J., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 32, 1-3, 199-259 (1982) · Zbl 0497.76041
[27] Hughes, T. J.; Tezduyar, T., Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations, Comput. Methods Appl. Mech. Eng., 45, 1-3, 217-284 (1984) · Zbl 0542.76093
[28] Hoffman, J.; Johnson, C., A new approach to computational turbulence modeling, Comput. Methods Appl. Mech. Eng., 195, 23-24, 2865-2880 (2006) · Zbl 1176.76065
[29] Bazilevs, Y.; Calo, V.; Cottrell, J.; Hughes, T.; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. Methods Appl. Mech. Eng., 197, 1-4, 173-201 (2007) · Zbl 1169.76352
[30] Bazilevs, Y.; Akkerman, I., Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method, J. Comput. Phys., 229, 9, 3402-3414 (2010) · Zbl 1290.76037
[31] Hughes, T. J.; Mazzei, L.; Jansen, K. E., Large eddy simulation and the variational multiscale method, Comput. Visualiz. Sci., 3, 1, 47-59 (2000) · Zbl 0998.76040
[32] Brezzi, F.; Pitkäranta, J., On the stabilization of finite element approximations of the Stokes equations, (Efficient Solutions Of Elliptic Systems (1984), Springer), 11-19 · Zbl 0552.76002
[33] Burman, E.; Fernández, M.; Hansbo, P., Continuous interior penalty finite element method for Oseen’s equations, SIAM J. Numer. Anal., 44, 3, 1248-1274 (2006) · Zbl 1344.76049
[34] Codina, R.; Blasco, J., Stabilized finite element method for the transient Navier-Stokes equations based on a pressure gradient projection, Comput. Methods Appl. Mech. Eng., 182, 3-4, 277-300 (2000) · Zbl 0986.76037
[35] Farrell, P.; Maddison, J., Conservative interpolation between volume meshes by local Galerkin projection, Comput. Methods Appl. Mech. Eng., 200, 1-4, 89-100 (2011) · Zbl 1225.76193
[36] Brezzi, F.; Falk, R. S., Stability of higher-order Hood-Taylor methods, SIAM J. Numer. Anal., 28, 3, 581-590 (1991) · Zbl 0731.76042
[37] Hessenthaler, A.; Röhrle, O.; Nordsletten, D., Validation of a non-conforming monolithic fluid-structure interaction method using phase-contrast MRI, Int. J. Numer. Methods Biomed. Eng., 33, 8, Article e2845 pp. (2017)
[38] Tezduyar, T. E.; Osawa, Y., Finite element stabilization parameters computed from element matrices and vectors, Comput. Methods Appl. Mech. Eng., 190, 3-4, 411-430 (2000) · Zbl 0973.76057
[39] Braack, M.; Burman, E.; John, V.; Lube, G., Stabilized finite element methods for the generalized Oseen problem, Comput. Methods Appl. Mech. Engrg., 196, 4, 853-866 (2007) · Zbl 1120.76322
[40] Mayer, U. M.; Gerstenberger, A.; Wall, W. A., Interface handling for three-dimensional higher-order XFEM-computations in fluid-structure interaction, Int. J. Numer. Methods Eng., 79, 7, 846-869 (2009) · Zbl 1171.74447
[41] Sudhakar, Y.; Wall, W. A., Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods, Comput. Methods Appl. Mech. Eng., 258, 39-54 (2013) · Zbl 1286.65037
[42] Lee, J.; Cookson, A.; Roy, I.; Kerfoot, E.; Asner, L.; Vigueras, G.; Sochi, T.; Deparis, S.; Michler, C.; Smith, N. P., Multiphysics computational modeling in CHeart, SIAM J. Scientif. Comput., 38, 3, C150-C178 (2016) · Zbl 1358.92015
[43] Karypis, G.; Kumar, V., A parallel algorithm for multilevel graph partitioning and sparse matrix ordering, J. Parallel Distributed Comput., 48, 1, 71-95 (1998)
[44] Shamanskii, V., A modification of Newton’s method, Ukr. Math. Bull., 19, 1, 118-122 (1967) · Zbl 0176.13802
[45] Amestoy, P. R.; Duff, I. S.; L’excellent, J.-Y., Multifrontal parallel distributed symmetric and unsymmetric solvers, Comput. Methods Appl. Mech. Eng., 184, 2-4, 501-520 (2000) · Zbl 0956.65017
[46] Schäfer, M.; Turek, S.; Durst, F.; Krause, E.; Rannacher, R., Benchmark computations of laminar flow around a cylinder, (Flow Simulation With High-Performance Computers II (1996), Springer), 547-566 · Zbl 0874.76070
[47] FEATFLOW finite element software for the incompressible Navier-Stokes equations, URL www.featflow.de.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.