×

A parallel finite element post-processing algorithm for the damped Stokes equations. (English) Zbl 1538.65555

Summary: This paper presents and analyzes a parallel finite element post-processing algorithm for the simulation of Stokes equations with a nonlinear damping term, which integrates the algorithmic advantages of the two-level approach, the partition of unity method and post-processing technique. The most valuable highlights of the present algorithm are that (1) a global continuous approximate solution is generated via the partition of unity method; (2) by adding an extra coarse grid correction step, the smoothness of the approximate solution is improved; (3) it has a good parallel performance since there requires little communication in solving a series of residual problems in the subdomain of interest. We theoretically derive the \(L^2\)-error estimates both for the approximate velocity and pressure and \(H^1\)-error estimate for the velocity under some necessary conditions. Meanwhile, we numerically perform various test examples to validate the theoretically predicted convergence rate and illustrate the high efficiency of the proposed algorithm.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
76M10 Finite element methods applied to problems in fluid mechanics
35Q30 Navier-Stokes equations
76D07 Stokes and related (Oseen, etc.) flows
65Y05 Parallel numerical computation
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs

Software:

FreeFem++; SG
Full Text: DOI

References:

[1] Bresch, D.; Desjardins, B.; Lin, C., On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Commun. Partial Differ. Equ., 843-868 (2003) · Zbl 1106.76436
[2] Bresch, D.; Desjardins, B., Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Commun. Math. Phys., 211-223 (2003) · Zbl 1037.76012
[3] Li, M.; Shi, D.; Dai, Y., Stabilized low order finite elements for Stokes equations with damping. J. Math. Anal. Appl., 646-660 (2016) · Zbl 1330.76073
[4] Qiu, H.; Mei, L., Two-grid MFEAs for the incompressible Stokes type variational inequality with damping. Comput. Math. Appl., 2772-2788 (2019) · Zbl 1443.65367
[5] Zhang, Y.; Qian, Y.; Mei, L., Discontinuous Galerkin methods for the Stokes equations with nonlinear damping term on general meshes. Comput. Math. Appl., 2258-2275 (2020) · Zbl 1437.65206
[6] Peng, H.; Zhai, Q., Weak Galerkin method for the Stokes equations with damping. Discrete Contin. Dyn. Syst., Ser. B, 1853-1875 (2022) · Zbl 1486.65263
[7] Zheng, B.; Shang, Y., Local and parallel finite element algorithms based on domain decomposition for the 2D/3D Stokes equations with damping. Comput. Math. Appl., 82-103 (2021) · Zbl 1524.65884
[8] Jiang, Y.; Zheng, B.; Shang, Y., A parallel grad-div stabilized finite element algorithm for the Stokes equations with damping. Comput. Math. Appl., 171-192 (2023) · Zbl 1538.65523
[9] Xu, J.; Zhou, A., Local and parallel finite element algorithms based on two-grid discretizations. Math. Comput., 881-909 (2000) · Zbl 0948.65122
[10] Sun, Y.; Shi, F.; Zheng, H.; Li, H.; Wang, F., Two-grid domain decomposition methods for the coupled Stokes-Darcy system. Comput. Methods Appl. Mech. Eng. (2021) · Zbl 1502.65105
[11] He, Y.; Xu, J.; Zhou, A.; Li, J., Local and parallel finite element algorithms for the Stokes problem. Numer. Math., 415-434 (2008) · Zbl 1145.65097
[12] Tang, Q.; Huang, Y., Local and parallel finite element algorithm based on Oseen-type iteration for the stationary incompressible MHD flow. J. Sci. Comput., 149-174 (2017) · Zbl 1434.76073
[13] Tang, Q.; Huang, Y., Parallel finite element computation of incompressible magnetohydrodynamics based on three iterations. Appl. Math. Mech., 141-154 (2022) · Zbl 1493.76065
[14] Shang, Y.; He, Y.; Kim, D.; Zhou, X., A new parallel finite element algorithm for the stationary Navier-Stokes equations. Finite Elem. Anal. Des., 1262-1279 (2011)
[15] Shang, Y.; He, Y., A parallel Oseen-linearized algorithm for the stationary Navier-Stokes equations. Comput. Methods Appl. Mech. Eng., 172-183 (2012) · Zbl 1243.76022
[16] Wassim, E.; Zheng, B.; Shang, Y., A parallel two-grid method based on finite element approximations for the 2D/3D Navier-Stokes equations with damping. Eng. Comput. (2023)
[17] Melenk, J. M.; Babuška, I., The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Eng., 289-314 (1996) · Zbl 0881.65099
[18] Babuška, I.; Melenk, J. M., The partition of unity method. Int. J. Numer. Methods Eng., 727-758 (1997) · Zbl 0949.65117
[19] Holst, M., Adaptive numerical treatment of elliptic systems on manifolds. Adv. Comput. Math., 139-191 (2001) · Zbl 0997.65134
[20] Larson, M. G.; Målqvist, A., Adaptive variational multiscale methods based on a posteriori error estimation: energy norm estimates for elliptic problems. Comput. Methods Appl. Mech. Eng., 2313-2324 (2007) · Zbl 1173.74431
[21] Song, L.; Hou, Y.; Zheng, H., Adaptive local postprocessing finite element method for the Navier-Stokes equations. J. Sci. Comput., 255-267 (2013) · Zbl 1366.76057
[22] Bacuta, C.; Sun, J.; Zheng, C., Partition of unity refinement for local approximation. Numer. Methods Partial Differ. Equ., 803-817 (2011) · Zbl 1221.65300
[23] Yu, J.; Shi, F.; Zheng, H., Local and parallel finite element algorithms based on the partition of unity for the Stokes problem. SIAM J. Sci. Comput., C547-C567 (2014) · Zbl 1440.76091
[24] Wang, X.; Du, G., Local and parallel stabilized finite element methods based on two-grid discretizations for the Stokes equations. Numer. Algorithms, 67-83 (2022) · Zbl 07676510
[25] Zheng, H.; Yu, J.; Shi, F., Local and parallel finite element algorithm based on the partition of unity for incompressible flows. J. Sci. Comput., 512-532 (2015) · Zbl 1327.65249
[26] Du, G.; Zuo, L., A parallel partition of unity scheme based on two-grid discretizations for the Navier-Stokes problem. J. Sci. Comput., 1445-1462 (2018) · Zbl 1395.65126
[27] Du, G.; Zuo, L., Local and parallel partition of unity scheme for the mixed Navier-Stokes-Darcy problem. Numer. Algorithms, 635-650 (2022) · Zbl 1497.65251
[28] Balmus, M.; Hoffman, J.; Massing, A.; Nordsletten, D. A., A stabilized multidomain partition of unity approach to solving incompressible viscous flow. Comput. Methods Appl. Mech. Eng. (2022) · Zbl 1507.76092
[29] Adams, R.; Fournier, J., Sobolev Spaces (2003), Elsevier · Zbl 1098.46001
[30] Liu, D.; Li, K., Finite element analysis for the Stokes equations with damping. Math. Numer. Sin., 433-448 (2010) · Zbl 1240.76015
[31] Girault, V.; Raviart, P. A., Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms (2012), Springer Science & Business Media
[32] Fortin, M.; Brezzi, F., Mixed and Hybrid Finite Element Methods (1991), Springer-Verlag · Zbl 0788.73002
[33] Kellogg, R. B.; Osborn, J. E., A regularity result for the Stokes problem in a convex polygon. J. Funct. Anal., 397-431 (1976) · Zbl 0317.35037
[34] Dauge, M., Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. Part I. Linearized equations. SIAM J. Math. Anal., 74-97 (1989) · Zbl 0681.35071
[35] Hecht, F., New development in FreeFEM++. J. Numer. Math., 251-266 (2012) · Zbl 1266.68090
[36] Arnold, D. N.; Brezzi, F.; Fortin, M., A stable finite element for the Stokes equations. Calcolo, 337-344 (1984) · Zbl 0593.76039
[37] Taylor, C.; Hood, P., A numerical solution of the Navier-Stokes equations using the finite element technique. Comput. Fluids, 73-100 (1973) · Zbl 0328.76020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.