×

Quasistatic fracture using nonlinear-nonlocal elastostatics with explicit tangent stiffness matrix. (English) Zbl 1540.74123

Summary: We apply a nonlinear-nonlocal field theory for numerical calculation of quasistatic fracture. The model is given by a regularized nonlinear pairwise potential in a peridynamic formulation. The potential function is given by an explicit formula with an explicit first and second derivatives. This fact allows us to write the entries of the tangent stiffness matrix explicitly thereby saving computational costs during the assembly of the tangent stiffness matrix. We validate our approach against classical continuum mechanics for the linear elastic material behavior. In addition, we compare our approach to a state-based peridynamic model that uses standard numerical derivations to assemble the tangent stiffness matrix. The numerical experiments show that for elastic material behavior our approach agrees with both classical continuum mechanics and the state-based model. The fracture model is applied to produce a fracture simulation for a ASTM E8 like tension test. We conclude with an example of crack growth in a pre-cracked square plate. For the pre-cracked plate, we investigated (soft loading) and (hard loading). Our approach is novel in that only bond softening is used as opposed to bond breaking. For the fracture simulation we have shown that our approach works with and without initial damage for two common test problems.
{© 2022 John Wiley & Sons Ltd.}

MSC:

74R10 Brittle fracture
74K20 Plates
74B05 Classical linear elasticity
74A70 Peridynamics
74S20 Finite difference methods applied to problems in solid mechanics

Software:

HPX; NumPy; Matplotlib; SciPy
Full Text: DOI

References:

[1] SillingSA. Reformulation of elasticity theory for discontinuities and long‐range forces. J Mech Phys Solids. 2000;48(1):175‐209. · Zbl 0970.74030
[2] SillingSA, EptonM, WecknerO, XuJ, AskariE. Peridynamic states and constitutive modeling. J Elast. 2007;88(2):151‐184. · Zbl 1120.74003
[3] DiehlP, PrudhommeS, LévesqueM. A review of benchmark experiments for the validation of peridynamics models. J Peridyn Nonlocal Model. 2019;1(1):14‐35.
[4] DiehlP, LiptonR, WickT, TyagiM. A comparative review of peridynamics and phase‐field models for engineering fracture mechanics. Comput Mech. 2022;1‐35.
[5] HuangD, LuG, QiaoP. An improved peridynamic approach for quasi‐static elastic deformation and brittle fracture analysis. Int J Mech Sci. 2015;94:111‐122.
[6] MikataY. Analytical solutions of peristatic and peridynamic problems for a 1D infinite rod. Int J Solids Struct. 2012;49(21):2887‐2897.
[7] ZaccariottoM, LuongoF, GalvanettoU. Examples of applications of the peridynamic theory to the solution of static equilibrium problems. Aeronaut J. 2015;119(1216):677‐700.
[8] WangF, MaY’e, GuoY, HuangW. Studies on quasi‐static and fatigue crack propagation behaviours in friction stir welded joints using peridynamic theory. Adv Mater Sci Eng. 2019;2019:16.
[9] BreitenfeldM. Quasi‐Static Non‐Ordinary State‐Based Peridynamics for the Modeling of 3D Fracture. PhD thesis. Champaign, IL: University of Illinois at Urbana‐Champaign; 2014.
[10] KilicB, MadenciE. An adaptive dynamic relaxation method for quasi‐static simulations using the peridynamic theory. Theor Appl Fract Mech. 2010;53(3):194‐204.
[11] RabczukT, RenH. A peridynamics formulation for quasi‐static fracture and contact in rock. Eng Geol. 2017;225:42‐48.
[12] FreimanisA, PaeglitisA. Mesh sensitivity in peridynamic quasi‐static simulations. Proc Eng. 2017;172:284‐291.
[13] ChenX, GunzburgerM. Continuous and discontinuous finite element methods for a peridynamics model of mechanics. Comput Methods Appl Mech Eng. 2011;200(9‐12):1237‐1250. · Zbl 1225.74082
[14] EmmrichE, WecknerO. The peridynamic equation and its spatial discretisation. Math Model Anal. 2007;12(1):17‐27. · Zbl 1121.65073
[15] MacekRW, SillingSA. Peridynamics via finite element analysis. Finite Elem Anal Des. 2007;43(15):1169‐1178.
[16] WangH, TianH. A fast Galerkin method with efficient matrix assembly and storage for a peridynamic model. J Comput Phys. 2012;231(23):7730‐7738. · Zbl 1254.74112
[17] PrakashN, StewartRJ. A multi‐threaded method to assemble a sparse stiffness matrix for quasi‐static solutions of linearized bond‐based peridynamics. J Peridyn Nonlocal Model. 2020;1‐35.
[18] CassellAC, HobbsRE. Numerical stability of dynamic relaxation analysis of non‐linear structures. Int J Numer Methods Eng. 1976;10(6):1407‐1410.
[19] ToppingBHV, KhanAI. Parallel computation schemes for dynamic relaxation. Eng Comput. 1994;11(6):513‐548. · Zbl 0824.73078
[20] ShiiharaY, TanakaS, YoshikawaN. Fast quasi‐implicit NOSB peridynamic simulation based on FIRE algorithm. Mech Eng J. 2019;6(3):18‐00363.
[21] BitzekE, KoskinenP, GählerF, MoselerM, GumbschP. Structural relaxation made simple. Phys Rev Lett. 2006;97(17):170201.
[22] HuYL, MadenciE. Bond‐based peridynamic modeling of composite laminates with arbitrary fiber orientation and stacking sequence. Compos Struct. 2016;153:139‐175.
[23] HuY, ChenH, SpencerBW, MadenciE. Thermomechanical peridynamic analysis with irregular non‐uniform domain discretization. Eng Fract Mech. 2018;197:92‐113.
[24] SaadY, SchultzMH. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput. 1986;7(3):856‐869. · Zbl 0599.65018
[25] AmoldiWE. The principle of minimized iteration in the solution of the matrix eigenvalue problem. Quart A J Appl Math. 1951;9:17‐29. · Zbl 0042.12801
[26] SaadY. Krylov subspace methods for solving large unsymmetric linear systems. Math Comput. 1981;37(155):105‐126. · Zbl 0474.65019
[27] JafarzadehS, WangL, LariosA, BobaruF. A fast convolution‐based method for peridynamic transient diffusion in arbitrary domains. Comput Methods Appl Mech Eng. 2021;375:113633. doi:10.1016/j.cma.2020.113633 · Zbl 1506.74477
[28] JafarzadehS, MousaviF, LariosA, BobaruF. A general and fast convolution‐based method for peridynamics: applications to elasticity and brittle fracture; 2021. arXiv.
[29] LiptonR. Dynamic brittle fracture as a small horizon limit of peridynamics. J Elast. 2014;117(1):21‐50. · Zbl 1309.74065
[30] LiptonR, SillingS, LehoucqR. Complex fracture nucleation and evolution with nonlocal elastodynamics; 2016. arXiv preprint arXiv:1602.00247.
[31] LiptonR, LehoucqRB, JhaPK. Complex fracture nucleation and evolution with nonlocal elastodynamics. J Peridyn Nonlocal Model. 2019;133(1):122‐130. doi:10.1007/s42102‐019‐00010‐0
[32] GurneyC, HuntJ. Quasi‐static crack propagation. Proc Royal Soc Lond Ser A Math Phys Sci. 1967;299(1459):508‐524.
[33] DeanRH, HutchinsonJW. Quasi‐static steady crack growth in small‐scale yielding. Fracture Mechanics. ASTM International; 1980.
[34] RiceJR. Thermodynamics of the quasi‐static growth of Griffith cracks. J Mech Phys Solids. 1978;26(2):61‐78. · Zbl 0381.73085
[35] AndersonTL. Fracture Mechanics: Fundamentals and Applications. CRC Press; 2017. · Zbl 1360.74001
[36] ASTM International. ASTM E561‐20 standard test method for KR curve determination; 2020. http://www.astm.org/cgi‐bin/resolver.cgi?E561
[37] GriffithAA. VI. The phenomena of rupture and flow in solids. Philos Trans Royal Soc Lond Ser A Contain Pap Math Phys Char. 1921;221(582‐593):163‐198. · Zbl 1454.74137
[38] LiptonR. Cohesive dynamics and brittle fracture. J Elast. 2016;124(2):143‐191. · Zbl 1386.74127
[39] JhaPK, LiptonR. Numerical analysis of nonlocal fracture models in hölder space. SIAM J Numer Anal. 2018;56(2):906‐941. doi:10.1137/17M1112236 · Zbl 1388.74054
[40] JhaPK, LiptonR. Numerical convergence of nonlinear nonlocal continuum models to local elastodynamics. Int J Numer Methods Eng. 2018;114(13):1389‐1410. doi:10.1002/nme.5791 · Zbl 07878369
[41] LiptonR, SaidE, JhaPK. Free damage propagation with memory. J Elast. 2018;133:129‐153. doi:10.1007/s10659‐018‐9672‐7 · Zbl 1403.74080
[42] JhaPK, LiptonR. Kinetic relations and local energy balance for LEFM from a nonlocal peridynamic model. Int J Fract. 2020;226(1):81‐95. doi:10.1007/s10704‐020‐00480‐0
[43] LiptonR, JhaPK. Nonlocal elastodynamics and fracture. Nonlinear Differ Equ Appl. 2021;28(23). doi:10.1007/s00030‐021‐00683‐x · Zbl 1464.74012
[44] DiehlP. EMU‐nodal discretization figshare; 2020.
[45] BhattacharyaD, LiptonR. Quasistatic evolution with unstable forces; 2022. arXiv:2204.04571v1 [math.AP] April 10, 2022.
[46] LiptonR, SaidE, JhaPK. Dynamic brittle fracture from nonlocal double‐well potentials: a state‐based model. In: GeorgeZV (ed.), ed. Handbook of Nonlocal Continuum Mechanics for Materials and Structures. Springer; 2018:1‐27.
[47] DiehlP, JhaPK, KaiserH, LiptonR, LévesqueM. An asynchronous and task‐based implementation of peridynamics utilizing HPX—The C++ standard library for parallelism and concurrency. SN Appl Sci. 2020;2(12):2144. doi:10.1007/s42452‐020‐03784‐x
[48] LittlewoodD. Roadmap for software implementation. In: FlorinB (ed.), JohnTF (ed.), PhilippeHG (ed.), et al, eds. Handbook of Peridynamic Modeling. Chapman & Hall/CRC Press; 2016:147‐178.
[49] BrothersMD, FosterJT, MillwaterHR. A comparison of different methods for calculating tangent‐stiffness matrices in a massively parallel computational peridynamics code. Comput Methods Appl Mech Eng. 2014;279:247‐267. · Zbl 1423.74953
[50] LynessJN, MolerCB. Numerical differentiation of analytic functions. SIAM J Numer Anal. 1967;4(2):202‐210. · Zbl 0155.48003
[51] LynessJN. Differentiation formulas for analytic functions. Math Comput. 1968;22(102):352‐362. · Zbl 0159.45002
[52] PrudhommeS, DiehlP. On the treatment of boundary conditions for bond‐based peridynamic models. Comput Methods Appl Mech Eng. 2020;372:113391. · Zbl 1506.74433
[53] SillingSA, AskariE. A meshfree method based on the peridynamic model of solid mechanics. Comput Struct. 2005;83(17‐18):1526‐1535.
[54] DuQ. Nonlocal calculus of variations and well‐posedness of peridynamics. In: FlorinB (ed.), JohnTF (ed.), PhilippeHG (ed.), et al, eds. Handbook of Peridynamic Modeling. Chapman & Hall/CRC Press; 2016:101‐124.
[55] AksoyluB, CelikerF, KilicerO. Nonlocal operators with local boundary conditions in higher dimensions. Adv Comput Math. 2019;45(1):453‐492. · Zbl 1412.45017
[56] GuX, MadenciE, ZhangQ. Revisit of non‐ordinary state‐based peridynamics. Eng Fract Mech. 2018;190:31‐52.
[57] MadenciE, DorduncuM, BarutA, PhanN. Weak form of peridynamics for nonlocal essential and natural boundary conditions. Comput Methods Appl Mech Eng. 2018;337:598‐631. · Zbl 1440.74030
[58] GunzburgerM, LehoucqRB. A nonlocal vector calculus with application to nonlocal boundary value problems. Multisc Model Simul. 2010;8(5):1581‐1598. · Zbl 1210.35057
[59] DiehlP. Validation of a one‐dimensional bar figshare; 2020.
[60] JhaPK, DiehlP. NLMech: implementation of finite difference/meshfree discretization of nonlocal fracture models. J Open Source Softw. 2021;6(65):3020. doi:10.21105/joss.03020
[61] DiehlP. Validation 2D figshare; 2020.
[62] SaddMH. Elasticity: Theory, Applications, and Numerics. Academic Press; 2009.
[63] DiehlP, LiptonR, SchweitzerMA. Numerical verification of a bond‐based softening peridynamic model for small displacements: deducing material parameters from classical linear theory. INS Preprint No. 1630; 2016.
[64] DiehlP. Displacement field for the two‐dimensional benchmark. 10.6084/m9.figshare.15113508.v12021
[65] LayDC, LaySR, McDonaldJJ. Linear Algebra and Its Applications. Pearson; 2016.
[66] DiehlP. ASTM E8 Figshare; 2020.
[67] ASTM International. ASTM E8‐99 standard test methods for tension testing of metallic materials; 2001. https://www.astm.org/Standards/E8.htm
[68] DiehlP. Pre‐cracked square plate figshare; 2020.
[69] WuJ‐Y, HuangY, NguyenVP. On the BFGS monolithic algorithm for the unified phase field damage theory. Comput Methods Appl Mech Eng. 2020;360:112704. doi:10.1016/j.cma.2019.112704 · Zbl 1441.74196
[70] DiehlP. Quasistatic fracture using nonliner‐nonlocal elastostatics with explicit tangent stiffness matrix; 2021. 10.5281/zenodo.5484312
[71] OliphantTE. A Guide to NumPy. Trelgol Publishing; 2006.
[72] van derWaltS, ColbertSC, VaroquauxG. The NumPy array: a structure for efficient numerical computation. Comput Sci Eng. 2011;13(2):22‐30.
[73] VirtanenP, GommersR, OliphantTE, et al. SciPy 1.0: fundamental algorithms for scientific computing in python. Nat Methods. 2020;17:261‐272. doi:10.1038/s41592‐019‐0686‐2
[74] HunterJD. Matplotlib: a 2D graphics environment. Comput Sci Eng. 2007;9(3):90‐95. doi:10.1109/MCSE.2007.55
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.