×

A hybrid projection/data-driven reduced order model for the Navier-Stokes equations with nonlinear filtering stabilization. (English) Zbl 07788132

Summary: We develop a Reduced Order Model (ROM) for the Navier-Stokes equations with nonlinear filtering stabilization. Our approach, that can be interpreted as a Large Eddy Simulation model, combines a three-step algorithm called Evolve-Filter-Relax (EFR) with a computationally efficient finite volume method. The main novelty of our ROM lies in the use within the EFR algorithm of a nonlinear, deconvolution-based indicator function that identifies the regions of the domain where the flow needs regularization. The ROM we propose is a hybrid projection/data-driven strategy: a classical Proper Orthogonal Decomposition Galerkin projection approach for the reconstruction of the velocity and the pressure fields and a data-driven reduction method to approximate the indicator function used by the nonlinear differential filter. This data-driven technique is based on interpolation with Radial Basis Functions. We test the performance of our ROM approach on two benchmark problems: 2D and 3D unsteady flow past a cylinder at Reynolds number \(0 \leq Re \leq 100\). The accuracy of the ROM is assessed against results obtained with the full order model for velocity, pressure, indicator function and time evolution of the aerodynamics coefficients.

MSC:

76Mxx Basic methods in fluid mechanics
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76Dxx Incompressible viscous fluids
Full Text: DOI

References:

[1] Hesthaven, J. S.; Rozza, G.; Stamm, B., Certified Reduced Basis Methods for Parametrized Partial Differential Equations (2016), Springer International Publishing · Zbl 1329.65203
[2] Quarteroni, A.; Manzoni, A.; Negri, F., Reduced Basis Methods for Partial Differential Equations (2016), Springer International Publishing · Zbl 1337.65113
[3] Benner, P.; Ohlberger, M.; Patera, A.; Rozza, K.; Urban, G., Model Reduction of Parametrized Systems. MS&A Series (2017), Springer
[4] Benner, P.; Gugercin, S.; Willcox, K., A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev., 4, 483-531 (2015) · Zbl 1339.37089
[5] Bader, E.; Kärcher, M.; Grepl, M. A.; Veroy, K., Certified reduced basis methods for parametrized elliptic optimal control problems with distributed controls. SIAM J. Sci. Comput., 276-307 (2018) · Zbl 1388.49023
[6] Benner, P.; Schilders, W.; Grivet-Talocia, S.; Quarteroni, A.; Rozza, G.; Silveira, L. M., Model Order Reduction (2020), De Gruyter: De Gruyter Berlin, Boston
[7] Wang, Z.; Akhtar, I.; Borggaard, J.; Iliescu, T., Proper orthogonal decomposition closure models for turbulent flows: a numerical comparison. Comput. Methods Appl. Mech. Eng., 10-26 (2012) · Zbl 1253.76050
[8] Aubry, N.; Holmes, P.; Lumley, J. L.; Stone, E., The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech., 115-173 (1988) · Zbl 0643.76066
[9] Couplet, M.; Sagaut, P.; Basdevant, C., Intermodal energy transfers in a proper orthogonal decomposition Galerkin representation of a turbulent separated flow. J. Fluid Mech., 275-284 (2003) · Zbl 1063.76570
[10] Boyd, J. P., Two comments on filtering (artificial viscosity) for Chebyshev and Legendre spectral and spectral element methods: preserving boundary conditions and interpretation of the filter as a diffusion. J. Comput. Phys., 1, 283-288 (1998) · Zbl 0920.65046
[11] Fischer, P.; Mullen, J., Filter-based stabilization of spectral element methods. C. R. Acad. Sci., Ser. 1 Math., 3, 265-270 (2001) · Zbl 0990.76064
[12] Dunca, A.; Epshteyn, Y., On the Stolz-Adams deconvolution model for the large-eddy simulation of turbulent flows. SIAM J. Math. Anal., 6, 1890-1902 (2005) · Zbl 1128.76029
[13] Layton, W.; Rebholz, L.; Trenchea, C., Modular nonlinear filter stabilization of methods for higher Reynolds numbers flow. J. Math. Fluid Mech., 325-354 (2012) · Zbl 1294.76197
[14] Bertagna, L.; Quaini, A.; Veneziani, A., Deconvolution-based nonlinear filtering for incompressible flows at moderately large Reynolds numbers. Int. J. Numer. Methods Fluids, 8, 463-488 (2016)
[15] Bowers, A.; Rebholz, L., Numerical study of a regularization model for incompressible flow with deconvolution-based adaptive nonlinear filtering. Comput. Methods Appl. Mech. Eng., 1-12 (2013) · Zbl 1286.76079
[16] Girfoglio, M.; Quaini, A.; Rozza, G., A finite volume approximation of the Navier-Stokes equations with nonlinear filtering stabilization. Comput. Fluids, 27-45 (2019) · Zbl 1474.76045
[17] Girfoglio, M.; Quaini, A.; Rozza, G., Fluid-structure interaction simulations with a LES filtering approach in solids4Foam. Commun. Appl. Ind. Math., 13-28 (2021) · Zbl 1474.74043
[18] Xie, X.; Bao, F.; Webster, C., Evolve filter stabilization reduced-order model for stochastic Burgers equation. Fluids, 84 (2018)
[19] Wells, D.; Wang, Z.; Xie, X.; Iliescu, T., An evolve-then-filter regularized reduced order model for convection-dominated flows. Int. J. Numer. Methods Fluids, 598-615 (2017)
[20] Gunzburger, M.; Iliescu, T.; Mohebujjaman, M.; Schneier, M., An evolve-filter-relax stabilized reduced order stochastic collocation method for the time-dependent Navier-Stokes equations. SIAM/ASA J. Uncertain. Quantificat., 1162-1184 (2019) · Zbl 1428.65029
[21] Girfoglio, M.; Quaini, A.; Rozza, G., A POD-Galerkin reduced order model for a LES filtering approach. J. Comput. Phys. (2021) · Zbl 07513841
[22] Girfoglio, M.; Quaini, A.; Rozza, G., Pressure stabilization strategies for a LES filtering reduced order model. Fluids, 302 (2021)
[23] Strazzullo, M.; Ballarin, F.; Girfoglio, M.; Iliescu, T.; Rozza, G., Consistency of the full and reduced order models for evolve-filter-relax regularization of convection-dominated, marginally-resolved flows. Int. J. Numer. Methods Eng., 3148-3178 (2021) · Zbl 07767903
[24] Stabile, G.; Rozza, G., Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier-Stokes equations. Comput. Fluids, 273-284 (2018) · Zbl 1410.76264
[25] Akhtar, I.; Nayfeh, A. H.; Ribbens, C. J., On the stability and extension of reduced-order Galerkin models in incompressible flows. Theor. Comput. Fluid Dyn., 3, 213-237 (2009) · Zbl 1234.76040
[26] Hijazi, S.; Stabile, G.; Mola, A.; Rozza, G., Data-driven POD-Galerkin reduced order model for turbulent flows. J. Comput. Phys. (2020) · Zbl 1437.76015
[27] Lorenzi, S.; Cammi, A.; Luzzi, L.; Rozza, G., POD-Galerkin method for finite volume approximation of Navier-Stokes and RANS equations. Comput. Methods Appl. Mech. Eng., 151-179 (2016) · Zbl 1439.76112
[28] Barrault, M.; Nguyen, N. C.; Maday, Y.; Patera, A. T., An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math., 667-672 (2004) · Zbl 1061.65118
[29] Chaturantabut, S.; Sorensen, D., Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput., 5, 2737-2764 (2010) · Zbl 1217.65169
[30] Turek, S.; Schäfer, M., Benchmark computations of laminar flow around cylinder · Zbl 0874.76070
[31] John, V., Reference values for drag and lift of a two dimensional time-dependent flow around a cylinder. Int. J. Numer. Methods Fluids, 777-788 (2004) · Zbl 1085.76510
[32] John, V., On the efficiency of linearization schemes and coupled multigrid methods in the simulation of a 3D flow around a cylinder. Int. J. Numer. Methods Fluids, 845-862 (2006) · Zbl 1086.76039
[33] Bayraktar, E.; Mierka, O.; Turek, S., Benchmark computations of 3D laminar flow around a cylinder with CFX, OpenFOAM and FeatFlow. Int. J. Comput. Sci. Eng., 253-266 (2012)
[34] Pope, S., Turbulent Flows (2000), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0966.76002
[35] Leray, J., Essai sur le mouvement d’un fluide visqueux emplissant l’espace. Acta Math., 193-248 (1934) · JFM 60.0726.05
[36] Weller, H. G.; Tabor, G.; Jasak, H.; Fureby, C., A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys., 6, 620-631 (1998)
[37] Borggaard, J.; Iliescu, T.; Roop, J., A bounded artificial viscosity large eddy simulation model. SIAM J. Numer. Anal., 622-645 (2009) · Zbl 1391.76202
[38] Hunt, J.; Wray, A.; Moin, P., Eddies stream and convergence zones in turbulent flows (1988), Tech. Rep. CTR-S88, CTR report
[39] Vreman, A., An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys. Fluids, 10, 3670-3681 (2004) · Zbl 1187.76543
[40] Bowers, A. L.; Rebholz, L. G.; Takhirov, A.; Trenchea, C., Improved accuracy in regularization models of incompressible flow via adaptive nonlinear filtering. Int. J. Numer. Methods Fluids, 7, 805-828 (2012) · Zbl 1412.76044
[41] Olshanskii, M.; Xiong, X., A connection between filter stabilization and eddy viscosity models. Numer. Methods Partial Differ. Equ., 6, 2061-2080 (2013) · Zbl 1277.76040
[42] Ervin, V.; Layton, W.; Neda, M., Numerical analysis of filter based stabilization for evolution equations. SIAM J. Numer. Anal., 2307-2335 (2010) · Zbl 1255.76021
[43] Bazilevs, Y.; Calo, V.; Cottrell, J.; Hughes, T.; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput. Methods Appl. Mech. Eng., 1, 173-201 (2007) · Zbl 1169.76352
[44] Hariharan, P.; Giarra, M.; Reddy, V.; Day, S.; Manning, K.; Deutsch, S.; Stewart, S.; Myers, M.; Berman, M.; Burgreen, G.; Paterson, E.; Malinauskas, R., Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations. J. Biomech. Eng. (2011)
[45] Stewart, S.; Paterson, E.; Burgreen, G.; Hariharan, P.; Giarra, M.; Reddy, V.; Day, S.; Manning, K.; Deutsch, S.; Berman, M.; Myers, M.; Malinauskas, R., Assessment of CFD performance in simulations of an idealized medical device: results of FDA’s first computational inter laboratory study. Cardiovascular Engineering and Technology, 2, 139-160 (2012)
[46] Issa, R. I., Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys., 1, 40-65 (1986) · Zbl 0619.76024
[47] Stabile, G.; Rozza, G., ITHACA-FV - in real time highly advanced computational applications for finite volumes (2018)
[48] Rozza, G.; Huynh, D. B.P.; Patera, A. T., Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng., 3, 229 (2008) · Zbl 1304.65251
[49] Chinesta, F.; Huerta, A.; Rozza, G.; Willcox, K., Model order reduction. Encyclopedia of Computational Mechanics (2016)
[50] Kalashnikova, I.; Barone, M. F., On the stability and convergence of a Galerkin reduced order model (ROM) of compressible flow with solid wall and far-field boundary treatment. Int. J. Numer. Methods Eng., 10, 1345-1375 (2010) · Zbl 1202.74123
[51] Chinesta, F.; Ladeveze, P.; Cueto, E., A short review on model order reduction based on proper generalized decomposition. Arch. Comput. Methods Eng., 4, 395 (2011)
[52] Dumon, A.; Allery, C.; Ammar, A., Proper general decomposition (PGD) for the resolution of Navier-Stokes equations. J. Comput. Phys., 4, 1387-1407 (2011) · Zbl 1391.76099
[53] Tsiolakis, V.; Giacomini, M.; Sevilla, R.; Othmer, C.; Huerta, A., Parametric solutions of turbulent incompressible flows in OpenFOAM via the proper generalised decomposition. J. Comput. Phys. (2022) · Zbl 07524797
[54] Kunisch, K.; Volkwein, S., Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal., 2, 492-515 (2002) · Zbl 1075.65118
[55] Lazzaro, D.; Montefusco, L., Radial basis functions for the multivariate interpolation of large scattered data sets. J. Comput. Appl. Math., 521-536 (2002) · Zbl 1025.65015
[56] Orszag, S. A.; Israeli, M.; Deville, M., Boundary conditions for incompressible flows. J. Sci. Comput., 1, 75-111 (1986) · Zbl 0648.76023
[57] Johnston, H.; Liu, J.-G., Accurate, stable and efficient Navier-Stokes solvers based on explicit treatment of the pressure term. J. Comput. Phys., 1, 221-259 (2004) · Zbl 1127.76343
[58] Lax, P.; Wendroff, B., System of conservation laws. Commun. Pure Appl. Math., 217-237 (1960) · Zbl 0152.44802
[59] Passerini, T.; Quaini, A.; Villa, U.; Veneziani, A.; Canic, S., Validation of an open source framework for the simulation of blood flow in rigid and deformable vessels. Int. J. Numer. Methods Biomed. Eng., 11, 1192-1213 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.