×

Solutions to nonlocal evolution equations governed by non-autonomous forms and demicontinuous nonlinearities. (English) Zbl 1498.35560

Summary: We deal with the existence of solutions having \(L^2\)-regularity for a class of non-autonomous evolution equations. Associated with the equation, a general non-local condition is studied. The technique we used combines a finite dimensional reduction together with the Leray-Schauder continuation principle. This approach permits to consider a wide class of nonlinear terms by allowing demicontinuity assumptions on the nonlinearity.

MSC:

35R09 Integro-partial differential equations
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
35K90 Abstract parabolic equations
47H11 Degree theory for nonlinear operators

References:

[1] Achache M., Ouhabaz E.M., Lions’ maximal regularity problem with \(H^{\frac{1}{2}} \)-regularity in time Journal of Differential Equations, 266 6 (2019), 3654-3678. · Zbl 1412.35190
[2] Arendt, W.; Chill, R.; Fornaro, S.; Poupaud, C., \(L^p\)-maximal regularity for non-autonomous evolution equations, Journal of Differential Equations, 237, 1, 1-26 (2007) · Zbl 1126.34037 · doi:10.1016/j.jde.2007.02.010
[3] Amann, H., Maximal regularity for nonautonomous evolution equations, Advanced Nonlinear Studies, 4, 4, 417-430 (2004) · Zbl 1072.35103 · doi:10.1515/ans-2004-0404
[4] Arendt W., Semigroups and evolution equations: functional calculus, regularity and kernel estimates. In: Handbook of Differential Equations: Evolutionary Equations. North-Holland (2002), 1-85. · Zbl 1082.35001
[5] Arendt W., Batty C.J.K., Hieber M., Neubrander F., Vector-valued Laplace Transforms and Cauchy Problems (second edition), (Birkhäuser Basel, 2011). · Zbl 1226.34002
[6] Arendt, W.; Monniaux, S., Maximal regularity for non-autonomous Robin boundary conditions, Mathematische Nachrichten, 289, 11-12, 1325-1340 (2016) · Zbl 06639277 · doi:10.1002/mana.201400319
[7] Auscher, P.; Tchamitchian, P., Square roots of elliptic second order divergence operators on strongly Lipschitz domains: \(L^2\) theory, Journal d’Analyse Mathématique, 90, 1, 1-12 (2003) · Zbl 1173.35420 · doi:10.1007/BF02786549
[8] Bauschke H.H., Combettes P.L. Convex analysis and monotone operator theory in Hilbert spaces - second ed. (Springer, 2017). · Zbl 1359.26003
[9] Barroso, CS; Teixeira, EV, A topological and geometric approach to fixed points results for sum of operators and applications, Nonlinear Analysis: Theory, Methods & Applications, 60, 4, 625-650 (2005) · Zbl 1078.47014 · doi:10.1016/j.na.2004.09.040
[10] Benedetti, I.; Ciani, S., Evolution equations with nonlocal initial conditions and superlinear growth, Journal of Differential Equations, 318, 270-297 (2022) · Zbl 1485.35273 · doi:10.1016/j.jde.2022.02.030
[11] Benedetti, I.; Loi, NV; Malaguti, L.; Taddei, V., Nonlocal diffusion second order partial differential equations, Journal of Differential Equations, 262, 3 (2017) · Zbl 1353.35297 · doi:10.1016/j.jde.2016.10.019
[12] Benedetti I., Loi N.V., Malaguti L., Obukhovskii V., An approximation solvability method for nonlocal differential problems in Hilbert spaces. Communications in Contemporary Mathematichs, 1650002 (2016). · Zbl 1378.34083
[13] Benedetti, I.; Loi, VN; Taddei, V., An approximation solvability method for nonlocal semilinear differential problems in Banach spaces, Discrete & Continuous Dynamical Systems, 37, 6, 2977 (2017) · Zbl 1357.35272 · doi:10.3934/dcds.2017128
[14] Boyer F. and Fabrie P., Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. Applied Mathematical Sciences 183. Springer, 2013. · Zbl 1286.76005
[15] Boucherif, A.; Precup, R., Semilinear evolution equations with nonlocal initial conditions, Dynamic Systems and Applications, 16, 507-516 (2007) · Zbl 1154.34027
[16] Brezis H., Operáteurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. Elsevier, 1973. · Zbl 0252.47055
[17] Brezis H., Functional analysis, Sobolev spaces and partial differential equations. Springer Science & Business Media, 2010. · Zbl 1218.46002
[18] Browder F.E., de Figueiredo D.G., J-monotone nonlinear operators in Banach spaces. In Djairo G. de Figueiredo-Selected Papers (pp. 1-9). Springer, Cham. · Zbl 0148.13602
[19] Daners, D., Heat kernel estimates for operators with boundary conditions, Mathematische Nachrichten, 217, 1, 13-41 (2000) · Zbl 0973.35087 · doi:10.1002/1522-2616(200009)217:1<13::AID-MANA13>3.0.CO;2-6
[20] Deng, K., Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, Journal of Mathematical analysis and applications, 179, 2, 630-637 (1993) · Zbl 0798.35076 · doi:10.1006/jmaa.1993.1373
[21] Dupuis, P.; Nagurney, A., Dynamical systems and variational inequalities, Annals of Operations Research, 44, 1, 7-42 (1993) · Zbl 0785.93044 · doi:10.1007/BF02073589
[22] EL-Mennaoui O., Laasri H., A note on the norm-continuity for evolution families arising from non-autonomous forms, Semigroup Forum. Vol. 100. No. 2. Springer US, 2020. · Zbl 1444.34072
[23] Friesz, TL; Bernstein, D.; Stough, R., Dynamic systems, variational inequalities and control theoretic models for predicting time-varying urban network flows, Transportation Science, 30, 1, 14-31 (1996) · Zbl 0849.90061 · doi:10.1287/trsc.30.1.14
[24] Furi, M.; Pera, P., A continuation method on locally convex spaces and applications to ordinary differential equations on noncompact intervals, Annales Polonici Mathematici, 47, 331-346 (1987) · Zbl 0656.47052 · doi:10.4064/ap-47-3-331-346
[25] Goeleven, D.; Brogliato, B., Stability and instability matrices for linear evolution variational inequalities, IEEE Transactions on Automatic Control, 49, 4, 521-534 (2004) · Zbl 1365.49011 · doi:10.1109/TAC.2004.825654
[26] Garcia-Falset, J.; Muniz-Pérez, O.; Reich, S., Domains of accretive operators in Banach spaces, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 146, 2, 325-336 (2016) · Zbl 1440.47042 · doi:10.1017/S0308210515000451
[27] Haak, BH; Ouhabaz, EM, Maximal regularity for non-autonomous evolution equations, Mathematische Annalen, 363, 3, 1117-1145 (2015) · Zbl 1327.35220 · doi:10.1007/s00208-015-1199-7
[28] Haase M., The functional calculus for sectorial operators and similarity methods, Ph.D. Thesis, Ulm (2003) · Zbl 1066.47011
[29] Leray, J.; Schauder, J., Topologie et équations fonctionnelles, Annales scientifiques de l’École normale supérieure, 51, 45-78 (1934) · JFM 60.0322.02 · doi:10.24033/asens.836
[30] Koumla, S.; Precup, R., Study on Integrodifferential Evolution Systems with Nonlocal Initial Conditions, Recent Advances in Mathematical Research and Computer Science, 5, 13-27 (2021) · doi:10.9734/bpi/ramrcs/v5/3535F
[31] Lions J. L., Equations differentielles operationnelles: et problémes aux limites. Vol. 111. Springer-Verlag, (2013) · Zbl 0098.31101
[32] Loi, VL, Method of Guiding Functions for Differential Inclusions in a Hilbert Space, Differential Equations, 46, 10, 1438-1447 (2010) · Zbl 1232.34089 · doi:10.1134/S0012266110100071
[33] Lu, L.; Liu, Z.; Obukhovskii, V., Second order differential variational inequalities involving anti-periodic boundary value conditions, Journal of Mathematical Analysis and Applications, 473, 2, 846-865 (2019) · Zbl 1415.49008 · doi:10.1016/j.jmaa.2018.12.072
[34] Lucchetti, R.; Patrone, F., On Nemytskiiś operator and its application to the lower semicontinuity of integral functionals, Indiana University Mathematics Journal, 29, 5, 703-713 (1980) · Zbl 0476.47049 · doi:10.1512/iumj.1980.29.29051
[35] McIntosh A., On representing closed accretive sesquilinear forms as \((A^{1/2} u, A^{1/2} v)\), Collége de France Seminar, Vol. III (1982), 252-267. · Zbl 0515.47013
[36] Megginson, R. E., An introduction to Banach space theory, Vol. 183. Springer Science & Business Media (2012) · Zbl 0910.46008
[37] Moreira, D.; Teixeira, E., On the behavior of weak convergence under nonlinearities and applications, Proceedings of the American Mathematical Society, 133, 6, 1647-1656 (2005) · Zbl 1073.46030 · doi:10.1090/S0002-9939-04-07876-1
[38] Nagurney A., Ding Z., Projected dynamical systems and variational inequalities with applications. Vol. 2, Springer, (1995) · Zbl 0865.90018
[39] Nesterov Y., Introductory lectures on convex optimization: A basic course, Vol. 87. Springer Science & Business Media (2003) · Zbl 1086.90045
[40] Ntouyas S. K., Nonlocal initial and boundary value problems: a survey. In Handbook of differential equations: ordinary differential equations. Vol. 2 (2006), 461-557. North-Holland. · Zbl 1098.34011
[41] Paicu, A.; Vrabie, II, A class of nonlinear evolution equations subjected to nonlocal initial conditions, Nonlinear Anal., 72, 4091-4100 (2010) · Zbl 1200.34068 · doi:10.1016/j.na.2010.01.041
[42] Pascal, A.; Steve, H.; Michael, L.; Alan, M.; Tchamitchian, Ph, The solution of the Kato square root problem for second order operators on \({\mathbb{R} }^n\), Annals of mathematics, 156, 2, 633-654 (2002) · Zbl 1128.35316 · doi:10.2307/3597201
[43] Petryshyn, WV, Using degree theory for densely defined A-proper maps in the solvability of semilinear equations with unbounded and noninvertible linear part, Nonlinear Analysis: Theory, Methods & Applications, 4, 2, 259-281 (1980) · Zbl 0444.47046 · doi:10.1016/0362-546X(80)90053-X
[44] Prüss, J.; Schnaubelt, R., Solvability and maximal regularity of parabolic evolution equations with coefficients continuous in time, Journal of Mathematical Analysis and Applications, 256, 2, 405-430 (2001) · Zbl 0994.35076 · doi:10.1006/jmaa.2000.7247
[45] Rockafellar, RT, On the maximality of sums of nonlinear monotone operators, Transactions of the American Mathematical Society, 149, 1, 75-88 (1970) · Zbl 0222.47017 · doi:10.1090/S0002-9947-1970-0282272-5
[46] Showalter R. E., Monotone operators in Banach space and nonlinear partial differential equations. Vol. 49. American Mathematical Society, (2013)
[47] Xu, HK; Colao, V.; Muglia, L., Mild solutions of nonlocal semilinear evolution equations on unbounded intervals via approximation solvability method in reflexive Banach spaces, Journal of Mathematical Analysis and Applications, 498, 1 (2021) · Zbl 1481.34080 · doi:10.1016/j.jmaa.2021.124938
[48] Zeidler E., Nonlinear Functional Analysis and Its Applications II/A: Linear Monotone Operators. Springer Science & Business Media, (2013)
[49] Zeidler E., Nonlinear Functional Analysis and Its Applications II/B: Nonlinear Monotone Operators. Springer Science & Business Media, (2013)
[50] Zhenhai, L.; Lu, L.; Guo, X., Existence results for a class of semilinear differential variational inequalities with nonlocal boundary conditions, Topological Methods in Nonlinear Analysis, 55, 2, 429-449 (2020) · Zbl 1471.49007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.