×

Dissipative systems with constraints. (English) Zbl 0594.58037

This is an elaborate study of global qualitative results for dissipative systems with constraints. The authors consider a compact, connected, Riemannian configuration manifold M, a (perfect) constraint subbundle \(\Sigma\) M of TM and a force field F: TM\(\to T^*M\), consisting of a conservative and a dissipative part: \(F=dV+D\). They first establish a general theory concerning the reactions corresponding to perfect constraints and the construction of the Gibbs-Maggi-Appell (GMA) vector field on \(\Sigma\) M.
In section 3, some deep results are obtained in studying the attractor \({\mathcal A}\), consisting of all globally defined and bounded orbits on \(\Sigma\) M. It is shown, for example, that the \(\alpha\) and \(\omega\)- limit sets of any orbit in \({\mathcal A}\) are points, under the assumption that the center manifold of each equilibrium coincides locally with the set of equilibria. In that case, moreover, \({\mathcal A}\) appears to be the union of the unstable manifolds of the equilibrium points.
In section 4, the relationship between the attractor \({\mathcal A}\) and the configuration space M is studied. It is shown that both have the same dimension if V is a Morse function, D is strongly dissipative and \({\mathcal A}\) is a manifold. For sufficiently small V, moreover, \({\mathcal A}\) is diffeomorphic to M. The final section concerns the study of the flow of the GMA vector field restricted to \({\mathcal A}\), with respect to a corresponding flow on M.
Reviewer: W.Sarlet

MSC:

37C10 Dynamics induced by flows and semiflows
34C40 Ordinary differential equations and systems on manifolds
70F25 Nonholonomic systems related to the dynamics of a system of particles
37C70 Attractors and repellers of smooth dynamical systems and their topological structure
Full Text: DOI

References:

[1] Hirsh, M. W.; Pugh, C. C.; Shub, M., Invariant Manifolds, (Lecture Notes in Math., Vol. 583 (1977), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0355.58009
[2] Kurzweil, J., Invariant manifolds I, Comment. Math. Univ. Carolin., 11, 336-390 (1970) · Zbl 0197.47702
[3] Lewowicz, J., Stability properties of a class of attractors, Trans. Amer. Math. Soc., 185, 183-198 (1973) · Zbl 0228.58009
[4] Abraham, R.; Robbin, J., Transversal Mappings and Flows (1967), Benjamin: Benjamin New York · Zbl 0171.44404
[5] Boothby, W. M., An Introduction to Differential Manifolds and Riemannian Geometry (1975), Academic Press: Academic Press New York · Zbl 0333.53001
[6] Dieudonné, J., (Treatise on Analyses, Vol. III (1974), Academic Press: Academic Press New York) · Zbl 0292.58001
[7] Neimark, J. I.; Fufaev, N. A., Dynamics of Nonholomic Systems, (Mathematical Monographs (1972), Amer. Math. Soc: Amer. Math. Soc Providence, R.I), Translations of · Zbl 0245.70011
[8] Abraham, R.; Marsden, J. E., Foundations of Mechanics (1978), Benjamin: Benjamin New York · Zbl 0393.70001
[9] Pars, L. A., A Treatise on Analytical Dynamics (1965), Heinemaun: Heinemaun London · Zbl 0125.12004
[10] Civita, T. Levi; Amaldi, U., (Lezioni di Meccanica Razionale, Vol. II (1974), Zanichelli: Zanichelli Bologna) · JFM 49.0570.01
[11] Fusco, G., Moto di una particella sulla superficie piana di un solido: Lo schema dell’elemento vincolato come limite di una famiglia di schemi liberi, (Publication No. 218, I.M.A. Quaderno No. 15 (1980), Univ. di Roma: Univ. di Roma Rome) · Zbl 0476.70004
[12] Grioli, G., On the stress in rigid bodies, Meccanica, 18, 1, 3-8 (March 1983) · Zbl 0557.73002
[13] Appell, P., (Traité de mécanique rationnelle, Tome II (1953), Gauthier-Villars: Gauthier-Villars Paris) · JFM 40.0751.01
[14] Arnold, V., Méthodes Mathématiques de la Mécanique Classique (1976), Editions MIR · Zbl 0385.70001
[15] Oliva, W. M., Propriedades Genéricas dos Campos de Appell, 592 R, An. Acad. Brasil. Ciênc., 44 (1972)
[17] Hale, J. K.; Magalhãs, L. T.; Oliva, W. M., An Introduction to Infinite Dimensional Dynamical Systems-Geometric Theory, (Applied Math. Sciences, Vol. 47 (1984), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0533.58001
[18] Mello, A. A.H, ∑-Gradient vector-fields, J. Differential Equations, 24, 8-25 (1977) · Zbl 0338.58012
[19] Sallum, E. M., Vector fields tangent to a Reeb foliation on \(S^3\), J. Differential Equations, 34 (1979) · Zbl 0408.58026
[20] Shashahani, S., Dissipative systems on Manifolds, Invent. Math., 16, 177-190 (1972) · Zbl 0241.58008
[21] Billoti, J. E.; Lasalle, J. P., Periodic dissipative processes, Bull. Amer. Math. Soc., 6, 1082-1089 (1971) · Zbl 0274.34061
[22] Hale, J. K.; Massatt, P., Asymptotic behavior of gradient-like systems, (Un. Fla. Symp. Dyn. Systems II (1982), Academic Press: Academic Press New York) · Zbl 0542.34027
[23] Henry, D., “Invariant Manifolds,” mimiographed notes, (Dept. Mat. Aplicada (1983), Universidade de São Paulo)
[24] Chow, S.; Hale, J. K., Methods of Bifurcation Theory (1982), Springer-Verlag: Springer-Verlag New York · Zbl 0487.47039
[25] Schwartz, J. T., Nonlinear Functional Analysis, (Lecture Notes (1965), Courant Inst. of Math. Sci., New York University: Courant Inst. of Math. Sci., New York University New York) · Zbl 0203.14501
[27] Painlevé, P., Leçons sur le frottement (1895), Hermann: Hermann Paris · JFM 26.0781.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.