×

A scalable approach to compute delay margin of a class of neutral-type time delay systems. (English) Zbl 1467.34062

Consider linear delay equation of neutral type under the form \[ \dot{x}(t)-E\dot{x}(t-\tau)=Ax(t)+Bx(t-\tau) \] where \(A,B,E\) are real constant \(n\times n\) matrices. The related characteristic equation is \[ \det\Delta(s,e^{-s\tau})=\det(s(I_n-Ee^{-s\tau})-(A+Be^{-s\tau}))=0 . \] Assume that the spectral radius \(\rho(E)<1\) and that the equation is asymptotically stable for \(\tau=0\). The delay margin is defined as \[ \tau^*=\min\{\tau>0: s=i\omega\text{ is a characteristic root for some } \omega\in\mathbb{R}^+\} . \] Necessary and sufficient conditions for the existence of \(\tau^*>0\) are established.
A scalable implementation of a numerical alrgorithm for finding \(\tau^*\) is provided.
Numerical examples are given.

MSC:

34K06 Linear functional-differential equations
34K20 Stability theory of functional-differential equations
93D20 Asymptotic stability in control theory
65L03 Numerical methods for functional-differential equations
34K40 Neutral functional-differential equations
34K08 Spectral theory of functional-differential operators
Full Text: DOI

References:

[1] G. J. Armanious and R. C. Lind, Efficient numerical analysis of stability of high-order systems with a time delay, preprint, arXiv:1710.10289v1, 2018.
[2] G. J. Armanious and R. C. Lind, Efficient numerical analysis of stability of high-order systems with a time delay, Proc. AIAA Guid. Navigation Control Conf., 2018. https://doi.org/10.2514/6.2018-0863.
[3] C. E. Avellar and J. K. Hale, On the zeros of exponential polynomials, J. Math. Anal. Appl., 73 (1980), pp. 434-452. · Zbl 0435.30005
[4] S. P. Bhattacharyya, A. Datta, and L. H. Keel, Linear control theory: Structure, robustness, and optimization, CRC Press, Boca Raton, FL, 2018. · Zbl 1235.93120
[5] D. Breda, S. Maset, and R. Vermiglio, Pseudospectral differencing methods for characteristic roots of delay differential equations, SIAM J. Sci. Comput., 27 (2005), pp. 482-495. · Zbl 1092.65054
[6] D. Breda, S. Maset, and R. Vermiglio, TRACE-DDE: A tool for robust analysis and characteristic equations for delay differential equations, Topics in Time Delay Systems: Analysis, Algorithms and Control, Springer, Berlin, Heidelberg, 2009, pp. 145-155.
[7] D. Breda, S. Maset, and R. Vermiglio, Stability of Linear Delay Differential Equations: A Numerical Approach with MATLAB, Springer, New York, USA, 2015. · Zbl 1315.65059
[8] R. Burkard, M. Dell’Amico, and S. Martello, Assignment Problems, SIAM, Philadelphia, USA, 2012.
[9] J. Chen, G. Gu, and C. N. Nett, A new method for computing delay margins for stability of linear delay systems, Syst. Control Lett., 26 (1995), pp. 107-117. · Zbl 0877.93117
[10] K. L. Cooke and P. Van Den Driessche, On zeroes of some transcendental equations, Funkcialaj Ekvacioj, 29 (1986), pp. 77-90. · Zbl 0603.34069
[11] R. Datko, A procedure for determination of the exponential stability of certain differential-difference equations, Quart. Appl. Math., 36 (1978), pp. 279-292. · Zbl 0405.34051
[12] G.-R. Duan and H.-H. Yu, LMIs in Control Systems: Analysis, Design and Applications, CRC Press, Boca Raton, FL, 2013.
[13] K. Engelborghs, T. Luzyanina, and D. Roose, Numerical bifurcation analysis of delay differential equations using DDE-Biftool, ACM Trans. Math. Softw., 28 (2002), pp. 1-21. · Zbl 1070.65556
[14] E. Fridman, New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems, Systems Control Lett., 43 (2001), pp. 309-319. · Zbl 0974.93028
[15] G. H. Golub and J. M. Ortega, Scientific Computing: An Introduction with Parallel Computing, Elsevier, New York, 2014. · Zbl 0790.65001
[16] M. A. Gomez, A. V. Egorov, and S. Mondié, Necessary stability conditions for neutral type systems with a single delay, IEEE Trans. Automat. Control, 62 (2016), pp. 4691-4697. · Zbl 1390.34212
[17] M. A. Gomez, A. V. Egorov, and S. Mondié, Necessary stability conditions for neutral-type systems with multiple commensurate delays, Int. J. Control, 92 (2019), pp. 1155-1166. · Zbl 1416.93146
[18] M. A. Gomez, A. V. Egorov, and S. Mondié, Necessary and sufficient stability condition by finite number of mathematical operations for time-delay systems of neutral type, IEEE Trans. Automat. Control, (2020), https://doi.org/10.1109/TAC.2020.3008392. · Zbl 1467.93240
[19] K. Gu, J. Chen, and V. L. Kharitonov, Stability of Time-Delay Systems, Springer Science & Business Media, New York, 2003. · Zbl 1039.34067
[20] K. Gu, S.-I. Niculescu, and J. Chen, On stability crossing curves for general systems with two delays, J. Math. Anal. Appl., 311 (2005), pp. 231-253. · Zbl 1087.34052
[21] J. K. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977. · Zbl 0352.34001
[22] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. · Zbl 0787.34002
[23] R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, New York, 1988.
[24] J. JáJá, An Introduction to Parallel Algorithms, Addison-Wesley, Reading, MA, 1992. · Zbl 0781.68009
[25] E. Kamen, On the relationship between zero criteria for two-variable polynomials and asymptotic stability of delay differential equations, IEEE Trans. Automat. Control, 25 (1980), pp. 983-984. · Zbl 0458.93046
[26] T. Kato, A Short Introduction to Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1980. · Zbl 0435.47001
[27] H. Kokame, K. Hirata, K. Konishi, and T. Mori, Difference feedback fan stabilize uncertain steady states, IEEE Trans. Automat. Control, 46 (2001), pp. 1908-1913. · Zbl 1032.93065
[28] H. W. Kuhn, The Hungarian method for the assignment problem, Naval Research Logistics Quart., 2 (1955), pp. 83-97. · Zbl 0143.41905
[29] X. Li and C. E. de Souza, LMI approach to delay-dependent robust stability and stabilization of uncertain linear delay systems, in Proceedings of 1995 34th IEEE Conference on Decision and Control, vol. 4, IEEE, 1995, pp. 3614-3619.
[30] X.-G. Li, S.-I. Niculescu, and A. Çela, Analytic Curve Frequency-Sweeping Stability Tests for Systems with Commensurate Delays, Springer, New York, 2015. · Zbl 1395.93004
[31] X.-G. Li, S.-I. Niculescu, A. Çela, L. Zhang, and X. Li, A frequency-sweeping framework for stability analysis of time-delay systems, IEEE Trans. Automat. Control, 62 (2016), pp. 3701-3716. · Zbl 1373.93270
[32] M. Liu, I. Dassios, and F. Milano, On the stability analysis of systems of neutral delay differential equations, Circuits Systems Signal Process., 38 (2019), pp. 1639-1653.
[33] J. Louisell, A matrix method for determining the imaginary axis eigenvalues of a delay system, IEEE Trans. Automat. Control, 46 (2001), pp. 2008-2012. · Zbl 1007.34078
[34] J. Louisell, Matrix polynomials, similar operators, and the imaginary axis eigenvalues of a matrix delay equation, SIAM J. Control Optim., 53 (2015), pp. 399-413. · Zbl 1312.93055
[35] W. Michiels, K. Engelborghs, P. Vansevenant, and D. Roose, Continuous pole placement for delay equations, Automatica, 38 (2002), pp. 747-761. · Zbl 1034.93026
[36] W. Michiels and S.-I. Niculescu, Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach, SIAM, Philadelphia, 2007. · Zbl 1140.93026
[37] J. Munkres, Algorithms for the assignment and transportation problems, J. Society Ind. Appl. Math., 5 (1957), pp. 32-38. · Zbl 0083.15302
[38] A. N. Gundeş and H. Özbay, Controller design for delay margin improvement, in Proceedings of the 2019 18th European Control Conference (ECC), June 2019, pp. 2910-2914.
[39] N. Nguyen and E. Summers, On time delay margin estimation for adaptive control and robust modification adaptive laws, in Proceedings of the AIAA Guidance, Navigation, and Control Conference, 2011, p. 6438.
[40] V. Nguyen, C. Bonnet, I. Boussaada, and M. Souaiby, A problematic issue in the Walton-Marshall method for some neutral delay systems, in Proceedings of the 58th Conference on Decision and Control-Nice, France-December 11th-13th 2019, 2019.
[41] S.-I. Niculescu, Stability and hyperbolicity of linear systems with delayed state: A matrix-pencil approach, IMA J. Math. Control Inform., 15 (1998), pp. 331-347. · Zbl 0918.93046
[42] S.-I. Niculescu, Delay Effects on Stability: A Robust Control Approach, Springer-Verlag, Heidelberg, 2001. · Zbl 0997.93001
[43] N. Olgac, A. F. Ergenc, and R. Sipahi, “Delay scheduling”: A new concept for stabilization in multiple delay systems, J. Vibration Control, 11 (2005), pp. 1159-1172. · Zbl 1182.70032
[44] N. Olgac and R. Sipahi, An exact method for the stability analysis of time-delayed linear time-invariant (LTI) systems, IEEE Trans. Automat. Control, 47 (2002), pp. 793-797. · Zbl 1364.93576
[45] N. Olgac and R. Sipahi, The cluster treatment of characteristic roots and the neutral type time-delayed systems, Proc. ASME Int. Mech. Eng. Congr. Exposition, Dyn. Syst. Control, Parts A and B, 2004, pp. 1359-1368. · Zbl 1060.34046
[46] N. Olgac and R. Sipahi, A practical method for analyzing the stability of neutral type LTI-time delayed systems, Automatica, 40 (2004), pp. 847-853. · Zbl 1050.93065
[47] P. Pepe and I. Karafyllis, Converse Lyapunov-Krasovskii theorems for systems described by neutral functional differential equations in Hale’s form, Int. J. Control, 86 (2013), pp. 232-243. · Zbl 1278.93219
[48] K. Pyragas, Continuous control of chaos by self-controlling feedback, Phys. Lett. A, 170 (1992), pp. 421-428.
[49] A. Ramírez, D. Breda, and R. Sipahi, A scalable approach to compute delay margin of a class of neutral-type time delay systems, data files, figshare, 2019, https://doi.org/10.6084/m9.figshare.11362427.v1.
[50] A. Ramírez, D. Breda, and R. Sipahi, A scalable approach to compute delay margin of a class of neutral-type time delay systems, Matlab .m file, github, 2020, https://github.com/mecadin/Parallel-delay-margin-finder.
[51] A. Ramírez, R. Garrido, and S. Mondié, Velocity control of servo systems using an integral retarded algorithm, ISA Trans., 58 (2015), pp. 357-366.
[52] A. Ramírez, M. H. Koh, and R. Sipahi, An approach to compute and design the delay margin of a large-scale matrix delay equation, Int. J. Robust Nonlinear Control, 29 (2019), pp. 1101-1121. · Zbl 1418.93091
[53] A. Ramírez, S. Mondié, R. Garrido, and R. Sipahi, Design of proportional-integral-retarded (PIR) controllers for second-order LTI systems, IEEE Trans. Automat. Control, 61 (2016), pp. 1688-1693. · Zbl 1359.93306
[54] A. Ramírez and R. Sipahi, Multiple intentional delays can facilitate fast consensus and noise reduction in a multiagent system, IEEE Trans. Cybern., 49 (2019), pp. 1224-1235.
[55] A. Ramírez and R. Sipahi, Single-delay and multiple-delay proportional-retarded (pr) protocols for fast consensus in a large-scale network, IEEE Trans. Automat. Control, 64 (2018), pp. 2142-2149. · Zbl 1482.93280
[56] A. Ramírez, R. Sipahi, S. Mondié, and R. Garrido, An analytical approach to tuning of delay-based controllers for LTI-SISO systems, SIAM J. Control Optim., 55 (2017), pp. 397-412. · Zbl 1355.93077
[57] A. Ramírez, R. Sipahi, S. Mondié, and R. Garrido, Fast consensus in a large-scale multi-agent system with directed graphs using time-delayed measurements, Phil. Trans. Roy. Soc. A, 377 (2019), 20180130. · Zbl 1462.93002
[58] Z. V. Rekasius, A stability test for systems with delays, Proc. Joint Autom. Control Conf., 1980, Paper No. TP9-A.
[59] G. J. Silva, A. Datta, and S. P. Bhattacharyya, PI stabilization of first-order systems with time delay, Automatica, 37 (2001), pp. 2025-2031. · Zbl 1023.93052
[60] R. Sipahi, Mastering Frequency Domain Techniques for the Stability Analysis of LTI Time Delay Systems, vol. 20, SIAM, Philadelphia, 2019. · Zbl 1433.93114
[61] R. Sipahi, S.-I. Niculescu, C. T. Abdallah, W. Michiels, and K. Gu, Stability and stabilization of systems with time delay, IEEE Control Systems, 31 (2011), pp. 38-65. · Zbl 1395.93271
[62] R. Sipahi and N. Olgac, Complete stability robustness of third-order LTI multiple time-delay systems, Automatica, 41 (2005), pp. 1413-1422. · Zbl 1086.93049
[63] R. Sipahi and N. Olgac, Stability robustness of retarded LTI systems with single delay and exhaustive determination of their imaginary spectra, SIAM J. Control Optim., 45 (2006), pp. 1680-1696. · Zbl 1125.93054
[64] R. Sipahi and W. Qiao, Responsible eigenvalue concept for the stability of a class of single-delay consensus dynamics with fixed topology, IET Control Theory Appl., 5 (2011), pp. 622-629.
[65] G. Stépán, Retarded Dynamical Systems: Stability and Characteristic Function, Longman Scientific & Technical, New York, 1989. · Zbl 0686.34044
[66] A. G. Ulsoy, Time-delayed control of SISO systems for improved stability margins, J. Dyn. Syst. Meas. Control, 137 (2015), pp. 558-563.
[67] T. Vyhlídal, W. Michiels, P. Zítek, and P. McGahan, Stability impact of small delays in proportional-derivative state feedback, Control Eng. Pract., 17 (2009), pp. 382-393.
[68] T. Vyhlídal and P. Zítek, Mapping based algorithm for large-scale computation of quasi-polynomial zeros, IEEE Trans. Automat. Control, 54 (2009), pp. 171-177. · Zbl 1367.65076
[69] K. Walton and J. E. Marshall, Direct method for TDS stability analysis, IEE Proc. D Control Theory Appl., 1987, pp. 101-107. · Zbl 0636.93066
[70] Z. Wang and H. Hu, Robust stability test for dynamic systems with short delays by using Padé approximation, Nonlinear Dynamics, 18 (1999), pp. 275-287. · Zbl 0942.70015
[71] D. Wang, A. Ramírez, and R. Sipahi, Delay margin analysis of a large-scale optimal velocity model using the parallel processing delay margin finder (parDMF), in Proceedings of the International Conference on Control, Decision and Information Technologies, 2020.
[72] C. Xavier and S. S. Iyengar, Introduction to Parallel Algorithms, vol. 1, John Wiley & Sons, New York, 1998. · Zbl 0948.68220
[73] S. Yi, P. W. Nelson, and A. G. Ulsoy, Time-Delay Systems: Analysis and Control Using the Lambert W Function, World Scientific, Singapore, 2010. · Zbl 1209.93002
[74] J. Zhang, C. R. Knospe, and P. Tsiotras, Stability of linear time-delay systems: A delay-dependent criterion with a tight conservatism bound, in Proceedings of the American Control Conference, 2000, pp. 1458-1462.
[75] J. Zhang, C. R. Knospe, and P. Tsiotras, New results for the analysis of linear systems with time-invariant delays, Int. J. Robust Nonlinear Control, 13 (2003), pp. 1149-1175. · Zbl 1033.93032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.