×

Modeling tau transport in the axon initial segment. (English) Zbl 1453.92075

Summary: By assuming that tau protein can be in seven kinetic states, we developed a model of tau protein transport in the axon and in the axon initial segment (AIS). Two separate sets of kinetic constants were determined, one in the axon and the other in the AIS. This was done by fitting the model predictions in the axon with experimental results and by fitting the model predictions in the AIS with the assumed linear increase of the total tau concentration in the AIS. The calibrated model was used to make predictions about tau transport in the axon and in the AIS. To the best of our knowledge, this is the first paper that presents a mathematical model of tau transport in the AIS. Our modeling results suggest that binding of free tau to microtubules creates a negative gradient of free tau in the AIS. This leads to diffusion-driven tau transport from the soma into the AIS. The model further suggests that slow axonal transport and diffusion-driven transport of tau work together in the AIS, moving tau anterogradely. Our numerical results predict an interplay between these two mechanisms: as the distance from the soma increases, the diffusion-driven transport decreases, while motor-driven transport becomes larger. Thus, the machinery in the AIS works as a pump, moving tau into the axon.

MSC:

92C32 Pathology, pathophysiology
92C20 Neural biology

References:

[1] Huang, C. Y.; Rasband, M. N., Axon initial segments: Structure, function, and disease, Ann. New York Acad. Sci., 1420, 46-61 (2018)
[2] Leon-Espinosa, G.; Anton-Fernandez, A.; Tapia-Gonzalez, S.; DeFelipe, J.; Munoz, A., Modifications of the axon initial segment during the hibernation of the Syrian hamster, Brain Struct. Funct., 223, 4307-4321 (2018)
[3] Sun, X.; Wu, Y.; Gu, M.; Liu, Z.; Ma, Y.; Li, J.; Zhang, Y., Selective filtering defect at the axon initial segment in Alzheimer’s disease mouse models, Proc. Natl. Acad. Sci. USA, 111, 14271-14276 (2014)
[4] Zhou, D.; Lambert, S.; Malen, P.; Carpenter, S.; Boland, L.; Bennett, V., AnkyrinG is required for clustering of voltage-gated Na channels at axon initial segments and for normal action potential firing, Mol. Biol. Cell, 143 (1998), 1295-1304
[5] Normand, E. A.; Rasband, M. N., Subcellular patterning: Axonal domains with specialized structure and function, Dev. Cell, 32, 459-468 (2015)
[6] Gumy, L. F.; Hoogenraad, C. C., Local mechanisms regulating selective cargo entry and long-range trafficking in axons, Curr. Opin. Neurobiol., 51, 23-28 (2018)
[7] Leterrier, C., The axon initial segment: An updated viewpoint, J. Neurosci., 38, 2135-2145 (2018)
[8] Jones, S. L.; Korobova, F.; Svitkina, T., Axon initial segment cytoskeleton comprises a multiprotein submembranous coat containing sparse actin filaments, J. Cell Biol., 205, 67-81 (2014)
[9] Wang, Y.; Mandelkow, E., Tau in physiology and pathology, Nat. Rev. Neurosci., 17, 5-21 (2016)
[10] Lei, P.; Ayton, S.; Moon, S.; Zhang, Q.; Volitakis, I.; Finkelstein, D. I.; Bush, A. I., Motor and cognitive deficits in aged tau knockout mice in two background strains, Mol. Neurodegener., 9, 29 (2014)
[11] Huang, Y.; Wu, Z.; Zhou, B., Behind the curtain of tauopathy: A show of multiple players orchestrating tau toxicity, Cell. Mol. Life Sci., 73, 1-21 (2016)
[12] Iqbal, K.; Liu, F.; Gong, C.-X.; Grundke-Iqbal, I., Tau in Alzheimer disease and related tauopathies, Curr. Alzheimer Res., 7, 656-664 (2010)
[13] Zempell, H.; Mandelkow, E., Lost after translation: Missorting of tau protein and consequences for Alzheimer disease, Trends Neurosci., 37, 721-732 (2014)
[14] Blennow, K.; de Leon, M. J.; Zetterberg, H., Alzheimer’s disease, Lancet, 368, 387-403 (2006)
[15] Guo, T.; Noble, W.; Hanger, D. P., Roles of tau protein in health and disease, Acta Neuropathol., 133, 665-704 (2017)
[16] Arendt, T.; Stieler, J. T.; Holzer, M., Tau and tauopathies, Brain Res. Bull., 126, 238-292 (2016)
[17] Demaegd, K.; Schymkowitz, J.; Rousseau, F., Transcellular spreading of tau in tauopathies, Chembiochem, 19, 2424-2432 (2018)
[18] Do, T. D.; Economou, N. J.; Chamas, A.; Buratto, S. K.; Shea, J.; Bowers, M. T., Interactions between amyloid-\( \beta\) and tau fragments promote aberrant aggregates: Implications for amyloid toxicity, J. Phys. Chem. B, 118, 11220-11230 (2014)
[19] Zhang, X.; Fu, Z.; Meng, L.; He, M.; Zhang, Z., The early events that initiate \(\beta \)-amyloid aggregation in Alzheimer’s disease, Front. Aging Neurosci., 10, 359 (2018)
[20] Ittner, L. M.; Goetz, J., Amyloid-\( \beta\) and tau — a toxic pas de deux in Alzheimer’s disease, Nat. Rev. Neurosci., 12, 67-72 (2011)
[21] Long, J. M.; Holtzman, D. M., Alzheimer disease: An update on pathobiology and treatment strategies, Cell, 179, 312-339 (2019)
[22] Kametani, F.; Hasegawa, M., Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer’s disease, Front. Neurosci., 12, 25 (2018)
[23] Samsonov, A.; Yu, J. Z.; Rasenick, M.; Popov, S. V., Tau interaction with microtubules in vivo, J. Cell Sci., 117, 6129-6141 (2004)
[24] Scholz, T.; Mandelkow, E., Transport and diffusion of tau protein in neurons, Cell. Mol. Life Sci., 71, 3139-3150 (2014)
[25] Li, X.; Kumar, Y.; Zempel, H.; Mandelkow, E. M.; Biernat, J.; Mandelkow, E., Novel diffusion barrier for axonal retention of tau in neurons and its failure in neurodegeneration, EMBO J., 30, 4825-4837 (2011)
[26] Utton, M. A.; Connell, J.; Asuni, A. A.; van Slegtenhorst, M.; Hutton, M.; de Silva, R.; Lees, A. J.; Miller, C. C.J.; Anderton, B. H., The slow axonal transport of the microtubule-associated protein tau and the transport rates of different isoforms and mutants in cultured neurons, J. Neurosci., 22, 6394-6400 (2002)
[27] Utton, M. A.; Noble, W. J.; Hill, J. E.; Anderton, B. H.; Hanger, D. P., Molecular motors implicated in the axonal transport of tau and \(\alpha \)-synuclein, J. Cell Sci., 118, 4645-4654 (2005)
[28] Iwata, M.; Watanabe, S.; Yamane, A.; Miyasaka, T.; Misonou, H., Regulatory mechanisms for the axonal localization of tau protein in neurons, Mol. Biol. Cell, 30, 2441-2457 (2019)
[29] Chung, S.; Vafai, K., Low-density lipoprotein transport within a multi-layered arterial wall — effect of the atherosclerotic plaque/stenosis, J. Biomech., 46, 574-585 (2013)
[30] Chung, S.; Vafai, K., Mechanobiology of low-density lipoprotein transport within an arterial wall-impact of hyperthermia and coupling effects, J. Biomech., 47, 137-147 (2014)
[31] Kuznetsov, I. A.; Kuznetsov, A. V., Simulating tubulin-associated unit transport in an axon: Using bootstrapping for estimating confidence intervals of best fit parameter values obtained from indirect experimental data, Proc. R. Soc. A, 473, Article 20170045 pp. (2017) · Zbl 1404.92055
[32] Kuznetsov, I. A.; Kuznetsov, A. V., Simulating the effect of formation of amyloid plaques on aggregation of tau protein, Proc. R. Soc. A, 474, Article 20180511 pp. (2018) · Zbl 1425.92065
[33] Petersen, J. D.; Kaech, S.; Banker, G., Selective microtubule-based transport of dendritic membrane proteins arises in concert with axon specification, J. Neurosci., 34, 4135-4147 (2014)
[34] Jha, S.; Rasband, M. N., Di-rectifying tau, EMBO J., 30, 4699-4700 (2011)
[35] Walker, C. L.; Uchida, A.; Li, Y.; Trivedi, N.; Fenn, J. D.; Monsma, P. C.; Lariviere, R. C.; Julien, J.; Jung, P.; Brown, A., Local acceleration of neurofilament transport at nodes of Ranvier, J. Neurosci., 39, 663-677 (2019)
[36] Lee, R. H.; Mitchell, C. S., Axonal transport cargo motor count versus average transport velocity: Is fast versus slow transport really single versus multiple motor transport?, J. Theoret. Biol., 370, 39-44 (2015)
[37] Mueller, M. J.I.; Klumpp, S.; Lipowsky, R., Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors, Proc. Natl. Acad. Sci. USA, 105, 4609-4614 (2008)
[38] Cuchillo-Ibanez, I.; Seereeram, A.; Byers, H. L.; Leung, K.; Ward, M. A.; Anderton, B. H.; Hanger, D. P., Phosphorylation of tau regulates its axonal transport by controlling its binding to kinesin, FASEB J., 22, 3186-3195 (2008)
[39] Konzack, S.; Thies, E.; Marx, A.; Mandelkow, E. M.; Mandelkow, E., Swimming against the tide: Mobility of the microtubule-associated protein tau in neurons, J. Neurosci., 27, 9916-9927 (2007)
[40] Weissmann, C.; Reyher, H.; Gauthier, A.; Steinhoff, H.; Junge, W.; Brandt, R., Microtubule binding and trapping at the tip of neurites regulate tau motion in living neurons, Traffic, 10, 1655-1668 (2009)
[41] Hinrichs, M. H.; Jalal, A.; Brenner, B.; Mandelkow, E.; Kumar, S.; Scholz, T., Tau protein diffuses along the microtubule lattice, J. Biol. Chem., 287, 38559-38568 (2012)
[42] Brown, A., Slow axonal transport: Stop and go traffic in the axon, Nature Rev. Mol. Cell Biol., 1, 153-156 (2000)
[43] Butler, V. J.; Salazar, D. A.; Soriano-Castell, D.; Alves-Ferreira, M.; Dennissen, F. J.A.; Vohra, M.; Oses-Prieto, J. A.; Li, K. H.; Wang, A. L.; Jing, B.; Li, B.; Groisman, A.; Gutierrez, E.; Mooney, S.; Burlingame, A. L.; Ashrafi, K.; Mandelkow, E.; Encalada, S. E.; Kao, A. W., Tau/MAPT disease-associated variant A152T alters tau function and toxicity via impaired retrograde axonal transport, Hum. Mol. Genet., 28, 1498-1514 (2019)
[44] Black, M. M.; Slaughter, T.; Moshiach, S.; Obrocka, M.; Fischer, I., Tau is enriched on dynamic microtubules in the distal region of growing axons, J. Neurosci., 16, 3601-3619 (1996)
[45] Tai, H.; Schuman, E. M., Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction, Nat. Rev. Neurosci., 9, 826-838 (2008)
[46] Wang, Y.; Mandelkow, E., Degradation of tau protein by autophagy and proteasomal pathways, Biochem. Soc. Trans., 40, 644-652 (2012)
[47] Kuznetsov, I. A.; Kuznetsov, A. V., A comparison between the diffusion-reaction and slow axonal transport models for predicting tau distribution along an axon, Math. Med. Biol., 32, 263-283 (2015) · Zbl 1325.92020
[48] Beck, J. V.; Arnold, K. J., Parameter Estimation in Science and Engineering (1977), Wiley: Wiley New York · Zbl 0363.62020
[49] Sabatier, P., Past and future of inverse problems, J. Math. Phys., 41, 4082-4124 (2000) · Zbl 0982.34010
[50] Kool, J. B.; Parker, J. C.; van Genuchten, M. T., Parameter estimation for unsaturated flow and transport models — A review, J. Hydrol., 91, 255-293 (1987)
[51] Zadeh, K. S., Parameter estimation in flow through partially saturated porous materials, J. Comput. Phys., 227, 10243-10262 (2008) · Zbl 1218.76030
[52] Zadeh, K. S.; Shah, S. B., Mathematical modeling and parameter estimation of axonal cargo transport, J. Comput. Neurosci., 28, 495-507 (2010)
[53] Zadeh, K. S., A synergic simulation-optimization approach for analyzing biomolecular dynamics in living organisms, Comput. Biol. Med., 41, 24-36 (2011)
[54] Zadeh, K. S.; Montas, H. J., Parametrization of flow processes in porous media by multiobjective inverse modeling, J. Comput. Phys., 259, 390-401 (2014) · Zbl 1349.76261
[55] Mercken, M.; Fischer, I.; Kosik, K.; Nixon, R., Three distinct axonal transport rates for tau, tubulin, and other microtubule-associated proteins: Evidence for dynamic interactions of tau with microtubules in vivo, J. Neurosci., 15, 8259-8267 (1995)
[56] Janning, D.; Igaev, M.; Suendermann, F.; Bruehmann, J.; Beutel, O.; Heinisch, J. J.; Bakota, L.; Piehler, J.; Junge, W.; Brandt, R., Single-molecule tracking of tau reveals fast kiss-and-hop interaction with microtubules in living neurons, Mol. Biol. Cell, 25, 3541-3551 (2014)
[57] Kuznetsov, I. A.; Kuznetsov, A. V., Utilization of the bootstrap method for determining confidence intervals of parameters for a model of MAP1B protein transport in axons, J. Theoret. Biol., 419, 350-361 (2017) · Zbl 1370.92017
[58] Kneynsberg, A., The Role of the Axon Inital Segment and Tau Modifications in Axosomatic Tau Distribution (2018), Michigan State University, (Ph.D.)
[59] Xia, D.; Gutmann, J. M.; Gotz, J., Mobility and subcellular localization of endogenous, gene-edited tau differs from that of over-expressed human wild-type and P301L mutant tau, Sci. Rep., 6, 29074 (2016)
[60] Dantzig, G. B.; Thapa, M. N., Linear Programming 2: Theory and Extensions (2003), Springer: Springer New York · Zbl 1029.90037
[61] Zadeh, K. S.; Montas, H. J., A class of exact solutions for biomacromolecule diffusion-reaction in live cells, J. Theoret. Biol., 264, 914-933 (2010) · Zbl 1406.92254
[62] Zi, Z., Sensitivity analysis approaches applied to systems biology models, IET Syst. Biol., 5, 336-346 (2011)
[63] Kuznetsov, I. A.; Kuznetsov, A. V., Investigating sensitivity coefficients characterizing the response of a model of tau protein transport in an axon to model parameters, Comput. Methods Biomech. Biomed. Eng., 22, 71-83 (2019)
[64] Kacser, H.; Burns, J.; Fell, D., The control of flux, Biochem. Soc. Trans., 23, 341-366 (1995)
[65] Balaji, V.; Kaniyappan, S.; Mandelkow, E.; Wang, Y.; Mandelkow, E., Pathological missorting of endogenous MAPT/tau in neurons caused by failure of protein degradation systems, Autophagy, 14, 2139-2154 (2018)
[66] Sohn, P. D.; Tracy, T. E.; Son, H.; Zhou, Y.; Leite, R. E.P.; Miller, B. L.; Seeley, W. W.; Grinberg, L. T.; Gan, L., Acetylated tau destabilizes the cytoskeleton in the axon initial segment and is mislocalized to the somatodendritic compartment, Mol. Neurodegener., 11, 47 (2016)
[67] Zempel, H.; Dennissen, F. J.A.; Kumar, Y.; Luedtke, J.; Biernat, J.; Mandelkow, E.; Mandelkow, E., Axodendritic sorting and pathological missorting of tau are isoform-specific and determined by axon initial segment architecture, J. Biol. Chem., 292, 12192-12207 (2017)
[68] Poppek, D.; Keck, S.; Ermak, G.; Jung, T.; Stolzing, A.; Ullrich, O.; Davies, K. J.A.; Grune, T., Phosphorylation inhibits turnover of the tau protein by the proteasome: Influence of RCAN1 and oxidative stress, Biochem. J., 400, 511-520 (2006)
[69] Igaev, M.; Janning, D.; Suendermann, F.; Niewidok, B.; Brandt, R.; Junge, W., A refined reaction-diffusion model of tau-microtubule dynamics and its application in FDAP analysis, Biophys. J., 107, 2567-2578 (2014)
[70] Li, Y.; Jung, P.; Brown, A., Axonal transport of neurofilaments: A single population of intermittently moving polymers, J. Neurosci., 32, 746-758 (2012)
[71] Hardy, J. A.; Higgins, G. A., Alzheimer’s-disease: The amyloid cascade hypothesis, Science, 256, 184-185 (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.