×

Mixed stimulus-induced mode selection in neural activity driven by high and low frequency current under electromagnetic radiation. (English) Zbl 1377.92019

Summary: The electrical activities of neurons are dependent on the complex electrophysiological condition in neuronal system, the three-variable Hindmarsh-Rose (HR) neuron model is improved to describe the dynamical behaviors of neuronal activities with electromagnetic induction being considered, and the mode transition of electrical activities in neuron is detected when external electromagnetic radiation is imposed on the neuron. In this paper, different types of electrical stimulus impended with a high-low frequency current are imposed on new HR neuron model, and mixed stimulus-induced mode selection in neural activity is discussed in detail. It is found that mode selection of electrical activities stimulated by high-low frequency current, which also changes the excitability of neuron, can be triggered owing to adding the Gaussian white noise. Meanwhile, the mode selection of the neuron electrical activity is much dependent on the amplitude \(B\) of the high frequency current under the same noise intensity, and the high frequency response is selected preferentially by applying appropriate parameters and noise intensity. Our results provide insights into the transmission of complex signals in nerve system, which is valuable in engineering prospective applications such as information encoding.

MSC:

92C20 Neural biology
60H40 White noise theory
93E03 Stochastic systems in control theory (general)
93A30 Mathematical modelling of systems (MSC2010)

References:

[1] Hodgkin, A. L.; Huxley, A. F., The dual effect of membrane potential on sodium conductance in the giant axon of Loligo, The Journal of Physiology, 116, 4, 497-506 (1952) · doi:10.1113/jphysiol.1952.sp004719
[2] Fitzhugh, R., Impulses and physiological states in theoretical models, Biophysical Journal, 1, 445-466 (1961) · doi:10.1016/S0006-3495(61)86902-6
[3] Ermentrout, G. B.; Terman, D. H., Mathematical Foundations of Neuroscience (2010), New York, NY, USA: Springer Science & Business Media, New York, NY, USA · Zbl 1320.92002
[4] Morris, C.; Lecar, H., Voltage oscillations in the barnacle giant muscle fiber, Biophysical Journal, 35, 1, 193-213 (1981) · doi:10.1016/S0006-3495(81)84782-0
[5] Hindmarsh, J. L.; Rose, R. M., A model of the nerve impulse using two first-order differential equations, Nature, 296, 5853, 162-164 (1982) · doi:10.1038/296162a0
[6] Hindmarsh, J. L.; Rose, R. M., A model of neuronal bursting using three coupled first order differential equations, Proceedings of the Royal Society of London B: Biological Sciences, 221, 1222, 87-102 (1984) · doi:10.1098/rspb.1984.0024
[7] Chay, T. R., Chaos in a three-variable model of an excitable cell, Physica D: Nonlinear Phenomena, 16, 2, 233-242 (1985) · Zbl 0582.92007 · doi:10.1016/0167-2789(85)90060-0
[8] Li, L.; Gu, H.; Yang, M.; Liu, Z.; Ren, W., A series of bifurcation scenarios in the firing pattern transitions in an experimental neural pacemaker, International Journal of Bifurcation and Chaos, 14, 5, 1813-1817 (2004) · Zbl 1064.37071 · doi:10.1142/S0218127404010114
[9] Yang, Z.; Lu, Q., Transitions from bursting to spiking due to depolarizing current in the Chay neuronal model, Communications in Nonlinear Science and Numerical Simulation, 12, 3, 357-365 (2007) · Zbl 1112.34322 · doi:10.1016/j.cnsns.2005.01.014
[10] Wang, H.; Wang, L.; Yu, L.; Chen, Y., Response of Morris-Lecar neurons to various stimuli, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 83, 2 (2011) · doi:10.1103/PhysRevE.83.021915
[11] Wang, H.; Chen, Y., Spatiotemporal activities of neural network exposed to external electric fields, Nonlinear Dynamics, 85, 2, 881-891 (2016) · doi:10.1007/s11071-016-2730-4
[12] Lv, M.; Wang, C.; Ren, G.; Ma, J.; Song, X., Model of electrical activity in a neuron under magnetic flow effect, Nonlinear Dynamics, 85, 3, 1479-1490 (2016) · doi:10.1007/s11071-016-2773-6
[13] Wang, H.; Chen, Y.; Chen, Y., First-spike latency in Hodgkin’s three classes of neurons, Journal of Theoretical Biology, 328, 19-25 (2013) · Zbl 1330.92032 · doi:10.1016/j.jtbi.2013.03.003
[14] Ciszak, M.; Bellesi, M., Synaptic plasticity modulates autonomous transitions between waking and sleep states: Insights from a Morris-Lecar model, Chaos: An Interdisciplinary Journal of Nonlinear Science, 21, 4 (2011) · doi:10.1063/1.3657381
[15] Tang, J.; Luo, J.-M.; Ma, J., Information transmission in a neuron-astrocyte coupled model, PLoS ONE, 8, 11 (2013) · doi:10.1371/journal.pone.0080324
[16] Ma, J.; Tang, J., A review for dynamics in neuron and neuronal network, Nonlinear Dynamics, 89, 3, 1569-1578 (2017) · doi:10.1007/s11071-017-3565-3
[17] Ma, J.; Tang, J., A review for dynamics of collective behaviors of network of neurons, Science China Technological Sciences, 58, 12, 2038-2045 (2015) · doi:10.1007/s11431-015-5961-6
[18] Zhang, J.; Wang, C.; Wang, M.; Huang, S., Firing patterns transition induced by system size in coupled Hindmarsh-Rose neural system, Neurocomputing, 74, 17, 2961-2966 (2011) · doi:10.1016/j.neucom.2011.04.023
[19] Djeundam, S. R. D.; Yamapi, R.; Kofane, T. C.; Aziz-Alaoui, M. A., Deterministic and stochastic bifurcations in the Hindmarsh-Rose neuronal model, Chaos, 23, 3, 033125 (2013) · Zbl 1323.92043 · doi:10.1063/1.4818545
[20] Jun, D.; Guang-Jun, Z.; Yong, X.; Hong, Y.; Jue, W., Dynamic behavior analysis of fractional-order Hindmarsh-Rose neuronal model, Cognitive Neurodynamics, 8, 2, 167-175 (2014) · doi:10.1007/s11571-013-9273-x
[21] Guo, D.; Wu, S.; Chen, M.; Perc, M.; Zhang, Y.; Ma, J.; Cui, Y.; Xu, P.; Xia, Y.; Yao, D., Regulation of Irregular Neuronal Firing by Autaptic Transmission, Scientific Reports, 6 (2016) · doi:10.1038/srep26096
[22] Tang, J.; Zhang, J.; Ma, J.; Zhang, G. Y.; Yang, X. Q., Astrocyte calcium wave induces seizure-like behavior in neuron network, Science China Technological Sciences, 60, 1011-1018 (2016) · doi:10.1007/s11431-016-0293-9
[23] Ma, J.; Song, X.; Tang, J.; Wang, C., Wave emitting and propagation induced by autapse in a forward feedback neuronal network, Neurocomputing, 167, 378-389 (2015) · doi:10.1016/j.neucom.2015.04.056
[24] Wang, H.; Ma, J.; Chen, Y.; Chen, Y., Effect of an autapse on the firing pattern transition in a bursting neuron, Communications in Nonlinear Science and Numerical Simulation, 19, 9, 3242-3254 (2014) · Zbl 1510.92054 · doi:10.1016/j.cnsns.2014.02.018
[25] Yi, G.-S.; Wang, J.; Han, C.-X.; Deng, B.; Wei, X.-L., Spiking patterns of a minimal neuron to ELF sinusoidal electric field, Applied Mathematical Modelling, 36, 8, 3673-3684 (2012) · doi:10.1016/j.apm.2011.11.012
[26] Li, Y.; Schmid, G.; Hänggi, P.; Schimansky-Geier, L., Spontaneous spiking in an autaptic Hodgkin-Huxley setup, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 82, 6 (2010) · doi:10.1103/PhysRevE.82.061907
[27] Baptista, M. S.; Moukam Kakmeni, F. M.; Grebogi, C., Combined effect of chemical and electrical synapses in Hindmarsh-Rose neural networks on synchronization and the rate of information, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 82, 3 (2010) · doi:10.1103/physreve.82.036203
[28] Wang, C. N.; Wang, Y.; Ma, J., Calculation of Hamilton energy function of dynamical system by using Helmholtz theorem, Acta Physica Sinica, 65, 24 (2016) · doi:10.7498/aps.65.240501
[29] Yamada, Y.; Kashimori, Y., Neural mechanism of dynamic responses of neurons in inferior temporal cortex in face perception, Cognitive Neurodynamics, 7, 1, 23-38 (2013) · doi:10.1007/s11571-012-9212-2
[30] Ma, J.; Xu, Y.; Ren, G.; Wang, C., Prediction for breakup of spiral wave in a regular neuronal network, Nonlinear Dynamics, 84, 2, 497-509 (2016) · doi:10.1007/s11071-015-2502-6
[31] Ma, J.; Huang, L.; Tang, J.; Ying, H.-P.; Jin, W.-Y., Spiral wave death, breakup induced by ion channel poisoning on regular Hodgkin-Huxley neuronal networks, Communications in Nonlinear Science and Numerical Simulation, 17, 11, 4281-4293 (2012) · Zbl 1253.92010 · doi:10.1016/j.cnsns.2012.03.009
[32] Ma, J.; Huang, L.; Ying, H. P.; Pu, Z. S., Detecting the breakup of spiral waves in small-world networks of neurons due to channel block, Chinese Science Bulletin, 57, 17, 2094-2101 (2012) · doi:10.1007/s11434-012-5114-2
[33] Pinto, R. D.; Varona, P.; Volkovskii, A. R.; Szücs, A.; Abarbanel, H. D.; Rabinovich, M. I., Synchronous behavior of two coupled electronic neurons, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 62, 2, 2644-2656 (2000) · doi:10.1103/PhysRevE.62.2644
[34] Gu, H.; Zhao, Z.; Jia, B.; Chen, S., Dynamics of on-off neural firing patterns and stochastic effects near a sub-critical Hopf bifurcation, PLoS ONE, 10, 4 (2015) · doi:10.1371/journal.pone.0121028
[35] Korkmaz, N.; Öztürk, İ.; Kılıç, R., The investigation of chemical coupling in a HR neuron model with reconfigurable implementations, Nonlinear Dynamics, 86, 3, 1841-1854 (2016) · doi:10.1007/s11071-016-2996-6
[36] Yilmaz, E.; Baysal, V.; Ozer, M.; Perc, M., Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks, Physica A: Statistical Mechanics and its Applications, 444, 538-546 (2016) · Zbl 1400.92028 · doi:10.1016/j.physa.2015.10.054
[37] Yilmaz, E.; Ozer, M.; Baysal, V.; Perc, M., Autapse-induced multiple coherence resonance in single neurons and neuronal networks, Scientific Reports, 6 (2016) · doi:10.1038/srep30914
[38] Gu, H., Experimental observation of transition from chaotic bursting to chaotic spiking in a neural pacemaker, Chaos: An Interdisciplinary Journal of Nonlinear Science, 23, 2 (2013) · doi:10.1063/1.4810932
[39] Gu, H. G.; Pan, B. B.; Chen, G. R.; Duan, L. X., Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models, Nonlinear Dynamics, 78, 1, 391-407 (2014) · doi:10.1007/s11071-014-1447-5
[40] Jia, B.; Gu, H.; Xue, L., A basic bifurcation structure from bursting to spiking of injured nerve fibers in a two-dimensional parameter space, Cognitive Neurodynamics, 11, 2, 189-200 (2017) · doi:10.1007/s11571-017-9422-8
[41] Zhao, Z.; Gu, H., Transitions between classes of neuronal excitability and bifurcations induced by autapse, Scientific Reports, 7, 6760 (2017) · doi:10.1038/s41598-017-07051-9
[42] Gu, H. G.; Pan, B. B., A four-dimensional neuronal model to describe the complex nonlinear dynamics observed in the firing patterns of a sciatic nerve chronic constriction injury model, Nonlinear Dynamics, 81, 4, 2107-2126 (2015) · doi:10.1007/s11071-015-2129-7
[43] Gu, H.; Pan, B., Identification of neural firing patterns, frequency and temporal coding mechanisms in individual aortic baroreceptors, Frontiers in Computational Neuroscience, 9, AUGUST, article no. 108 (2015) · doi:10.3389/fncom.2015.00108
[44] Wang, Y.; Wang, C.; Ren, G.; Tang, J.; Jin, W., Energy dependence on modes of electric activities of neuron driven by multi-channel signals, Nonlinear Dynamics, 89, 3, 1967-1987 (2017) · doi:10.1007/s11071-017-3564-4
[45] Yang, L.; Liu, W.; Yi, M.; Wang, C.; Zhu, Q.; Zhan, X.; Jia, Y., Vibrational resonance induced by transition of phase-locking modes in excitable systems, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 86, 1 (2012) · doi:10.1103/PhysRevE.86.016209
[46] Yang, L.; Jia, Y., Effects of patch temperature on spontaneous action potential train due to channel fluctuations: Coherence resonance, BioSystems, 81, 3, 267-280 (2005) · doi:10.1016/j.biosystems.2005.05.004
[47] Bao, B. C.; Liu, Z.; Xu, J. P., Steady periodic memristor oscillator with transient chaotic behaviours, IEEE Electronics Letters, 46, 3, 228-230 (2010) · doi:10.1049/el.2010.3114
[48] Muthuswamy, B., Implementing memristor based chaotic circuits, International Journal of Bifurcation and Chaos, 20, 5, 1335-1350 (2010) · Zbl 1193.94082 · doi:10.1142/S0218127410026514
[49] Ren, G.; Xu, Y.; Wang, C., Synchronization behavior of coupled neuron circuits composed of memristors, Nonlinear Dynamics, 88, 2, 893-901 (2017) · doi:10.1007/s11071-016-3283-2
[50] Lv, M.; Ma, J., Multiple modes of electrical activities in a new neuron model under electromagnetic radiation, Neurocomputing, 205, 375-381 (2016) · doi:10.1016/j.neucom.2016.05.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.