×

Deterministic and stochastic bifurcations in the Hindmarsh-Rose neuronal model. (English) Zbl 1323.92043

Summary: We analyze the bifurcations occurring in the 3D Hindmarsh-Rose neuronal model with and without random signal. When under a sufficient stimulus, the neuron activity takes place; we observe various types of bifurcations that lead to chaotic transitions. Beside the equilibrium solutions and their stability, we also investigate the deterministic bifurcation. It appears that the neuronal activity consists of chaotic transitions between two periodic phases called bursting and spiking solutions. The stochastic bifurcation, defined as a sudden change in character of a stochastic attractor when the bifurcation parameter of the system passes through a critical value, or under certain condition as the collision of a stochastic attractor with a stochastic saddle, occurs when a random Gaussian signal is added. Our study reveals two kinds of stochastic bifurcation: the phenomenological bifurcation (P-bifurcations) and the dynamical bifurcation (D-bifurcations). The asymptotical method is used to analyze phenomenological bifurcation. We find that the neuronal activity of spiking and bursting chaos remains for finite values of the noise intensity.{
©2013 American Institute of Physics}

MSC:

92C20 Neural biology
34C60 Qualitative investigation and simulation of ordinary differential equation models
34C23 Bifurcation theory for ordinary differential equations
34D20 Stability of solutions to ordinary differential equations
34C28 Complex behavior and chaotic systems of ordinary differential equations
34F05 Ordinary differential equations and systems with randomness

References:

[1] Innocenti, G.; Morelli, A.; Genesio, R.; Torcini, A., Chaos, 17, 043128 (2007) · Zbl 1163.37336 · doi:10.1063/1.2818153
[2] Hindmarsh, J. L.; Rose, R. M., Nature (London), 296, 162 (1982) · doi:10.1038/296162a0
[3] Hindmarsh, J. L.; Rose, R. M., Proc. R. Soc. London, Ser. B, 221, 1222, 87 (1984) · doi:10.1098/rspb.1984.0024
[4] FitzHugh, R., Biophys. J., 1, 445 (1961) · doi:10.1016/S0006-3495(61)86902-6
[5] Hodgkin, A. L.; Huxley, A. F., J. Physiol. (London), 117, 500 (1952)
[6] Lindner, B.; Garcia-Ojalvo, J.; Neimand, A.; Schimansky-Geiere, L., Phys. Rep., 392, 321 (2004) · doi:10.1016/j.physrep.2003.10.015
[7] Reinker, S.; Puil, E.; Miura, R. M., Bull. Math. Biol., 65, 641 (2003) · Zbl 1334.92079 · doi:10.1016/S0092-8240(03)00026-0
[8] Yang, R.; Song, A., Int. J. Mod. Phys. B, 22, 30, 5365 (2008) · doi:10.1142/S0217979208049509
[9] Addesso, P.; Filatrella, G.; Pierro, V., Phys. Rev. E, 85, 016708 (2012) · doi:10.1103/PhysRevE.85.016708
[10] Addesso, P.; Pierro, V.; Filatrella, G., Eur. Phys. Lett., 101, 20005 (2013) · doi:10.1209/0295-5075/101/20005
[11] Bressloff, P. C.; Ming Lais, Y., J. Math. Neurosci., 1, 2 (2011) · Zbl 1259.92004 · doi:10.1186/2190-8567-1-2
[12] Yamapi, R.; Filatrella, G.; Aziz-Alaoui, M. A., Chaos, 20, 013114 (2010) · doi:10.1063/1.3309014
[13] Chéagé Chamgoué, A.; Yamapi, R.; Woafo, P., Eur. Phys. J. Plus, 127, 5, 59 (2012) · doi:10.1140/epjp/i2012-12059-1
[14] Ghosh, P.; Sen, S.; Shahed Riaz, S.; Shankar Ray, D., Phys. Rev. E, 83, 036205 (2011) · doi:10.1103/PhysRevE.83.036205
[15] Xia, S.; Qi-Shao, L., Chin. Phys., 14, 6, 1088 (2005) · doi:10.1088/1009-1963/14/6/006
[16] Wang, Y.; Wang, Z. D.; Wang, W., J. Phys. Soc. Jpn., 69, 1, 276 (2000) · doi:10.1143/JPSJ.69.276
[17] Longtin, A.; Bulsara, A. R.; Moss, F., Phys. Rev. Lett., 67, 656 (1991) · doi:10.1103/PhysRevLett.67.656
[18] Longtin, A.; Bulsara, A. R.; Pierson, D.; Moss, F., Biol. Cybern., 70, 569 (1994) · Zbl 0800.92073 · doi:10.1007/BF00198810
[19] McNamara, B.; Wiesenfeld, K., Phys. Rev. A, 39, 4854 (1989) · doi:10.1103/PhysRevA.39.4854
[20] Corson, N., Dynamique d”un modèle neuronal, Synchronisation et Complexité (2009)
[21] Corson, N.; Aziz-Alaoui, M. A., Dyn. Contin. Discrete Impulsive Syst.: Ser. B, 16, 4, 535 (2009) · Zbl 1360.34106
[22] Corson, N.; Aziz-Alaoui, M. A.; Ghnemat, R.; Balev, S.; Bertelle, C., Int. J. Bifurcation Chaos Appl. Sci. Eng., 22, 2, 1250025 (2012) · Zbl 1270.37036 · doi:10.1142/S0218127412500253
[23] Rinzel, J., “Bursting oscillations in an excitable membrane model,” in Ordinary and Partial Differential Equations, Lecture Notes in Mathematics, Vol. 1151, p. 304 (Springer,1985). · Zbl 0584.92003
[24] Rinzel, J.; Ermentrout, B.; Koch, C.; Segev, I., Analysis of neural excitability and oscillations, in Methods of Neural Modeling: From Synapses to Networks, 135 (1989)
[25] Terman, D., J. Nonlinear Sci., 2, 135 (1992) · Zbl 0900.92059 · doi:10.1007/BF02429854
[26] Butera, R., Chaos, 8, 274 (1998) · Zbl 1056.92502 · doi:10.1063/1.166358
[27] Cymbalyuk, G.; Gaudry, Q.; Masino, M. A.; Calabrese, R. L., J. Neurosci., 22, 10580 (2002)
[28] Bazhenov, M.; Timofeev, I.; Steriade, M.; Sejnowski, T. J., J. Neurophysiol., 84, 1076 (2000)
[29] Chay, T. R., Physica D, 16, 233 (1985) · Zbl 0582.92007 · doi:10.1016/0167-2789(85)90060-0
[30] Bertram, R.; Sherman, A., J. Biosci., 25, 197 (2000)
[31] Hill, A.; Lu, J.; Masino, M.; Olsen, O.; Calabrese, R. L., J. Comput. Neurosci., 10, 281 (2001) · doi:10.1023/A:1011216131638
[32] Gu, H.; Yang, M.; Li, L.; Liu, Z.; Ren, W., Phys. Lett. A, 319, 89 (2003) · Zbl 1038.92007 · doi:10.1016/j.physleta.2003.09.077
[33] Yang, Z.; Lu, Q.; Li, L., Chaos, Solitons Fractals, 27, 689 (2006) · Zbl 1083.37535 · doi:10.1016/j.chaos.2005.04.038
[34] González-Miranda, J. M., Int. J. Bifurcation Chaos Appl. Sci. Eng., 17, 9, 3071 (2007) · Zbl 1185.37189 · doi:10.1142/S0218127407018877
[35] Beauchemin, C., L’impact du bruit sur la dynamique d’un neurone (2006)
[36] Yamapi, R.; Filatrella, G.; Aziz-Alaoui, M. A.; Hilda, C., Chaos, 22, 043114 (2012) · Zbl 1319.35270 · doi:10.1063/1.4766678
[37] Arnold, L., Random Dynamical Systems (1998) · Zbl 0906.34001
[38] Frank, T. D., Nonlinear Fokker-Planck Equations, Fundamentals and Applications, Springer Series in Synergetics (2005) · Zbl 1071.82001
[39] Schmidt, F., Systèmes dynamiques et incertitudes (2009)
[40] Osipov, V. V.; Ponizovskaya, E. V., Phys. Lett. A, 238, 369 (1998) · Zbl 1044.92501 · doi:10.1016/S0375-9601(97)00848-7
[41] Osipov, V. V.; Ponizovskaya, E. V., Phys. Lett. A, 271, 191 (2000) · doi:10.1016/S0375-9601(00)00356-X
[42] Wang, Y., Generalized Fokker-Planck equation with generalized interval probability, Mech. Syst. Signal Process., 37, 92-104 (2013) · doi:10.1016/j.ymssp.2012.02.013
[43] Knuth, D. E., The Art of Computer Programming, 2 (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.