×

Nonlinear interaction of solitary waves described by multi-rational wave solutions of the \((2+1)\)-dimensional Kadomtsev-Petviashvili equation with variable coefficients. (English) Zbl 1372.35067

Summary: In this paper, the generalized unified method is used to construct multi-rational wave solutions of the \((2 + 1)\)-dimensional Kadomtsev-Petviashvili equation with variable coefficients. This is an extension of the previous work that was given by the same author in [the author and H. I. Abdel-Gawad, “Multi-wave solutions of the \((2+1)\)-dimensional Nizhnik-Novikov-Veselov equations with variable coefficients”, Eur. Phys. J. Plus 130, No. 10, Article ID 215, 11 p. (2015; doi:10.1140/epjp/i2015-15215-1)]. The \((2+1)\)-dimensional Kadomtsev-Petviashvili equation with variable coefficients can be used to characterize many nonlinear phenomena in fluid dynamics, plasma physics and some other nonlinear science when the inhomogeneities of media and non-uniformities of boundaries are taken into consideration. To give more physical insight into the obtained solutions, we present graphically their representative structures by setting the arbitrary functions in the solutions as specific functions. Moreover, the influences of the variable coefficient functions and interaction properties of solitary waves are discussed for physical interests and possible applications.

MSC:

35C08 Soliton solutions
47J35 Nonlinear evolution equations
Full Text: DOI

References:

[1] Osman, M.S., Abdel-Gawad, H.I.: Multi-wave solutions of the \[(2 ++ 1)\]-dimensional Nizhnik-Novikov-Veselov equations with variable coefficients. EPJ Plus. 130(10), 1-11 (2015)
[2] Mirzazadeh, M., Eslami, M., Biswas, A.: 1-Soliton solution of KdV6 equation. Nonlinear Dyn. 80(1-2), 387-396 (2015) · Zbl 1345.35018 · doi:10.1007/s11071-014-1876-1
[3] Munro, S., Parkes, E.J.: Stability of solitary-wave solutions to a modified Zakharov-Kuznetsov equation. J. Plasma Phys. 64(4), 411-426 (2000) · doi:10.1017/S0022377800008771
[4] Atre, R., Panigrahi, P.K.: Class of solitary wave solutions of the one-dimensional Gross-Pitaevskii equation. Phys. Rev. E. 73(5), 056611 (2006) · doi:10.1103/PhysRevE.73.056611
[5] Zhou, Q., Ekici, M., Sonmezoglu, M., Mirzazadeh, M., Eslami, M.: Optical solitons with Biswas-Milovic equation by extended trial equation method. Nonlinear Dyn. 84(4), 1883-1900 (2016) · Zbl 1355.78029 · doi:10.1007/s11071-016-2613-8
[6] Wazwaz, A.M.: New solitary wave solutions to the modified forms of Degasperis-Procesi and Camassa-Holm equations. Appl. Math. Comput. 186(1), 130-141 (2007) · Zbl 1114.65124
[7] Kangalgil, F., Ayaz, F.: Solitary wave solutions for the KdV and mKdV equations by differential transform method. Chaos Soliton Fract. 41(1), 464-472 (2009) · Zbl 1198.35222 · doi:10.1016/j.chaos.2008.02.009
[8] Zhang, L., Khalique, C.M.: Exact solitary wave and quasi-periodic wave solutions of the KdV-Sawada-Kotera-Ramani equation. Adv. Differ. Equ-NY. 2015(1), 1-12 (2015) · Zbl 1350.34016 · doi:10.1186/s13662-014-0331-4
[9] Mohebbi, A.: Solitary wave solutions of the nonlinear generalized Pochhammer-Chree and regularized long wave equations. Nonlinear Dyn. 70(4), 2463-2474 (2012) · Zbl 1268.74027 · doi:10.1007/s11071-012-0634-5
[10] Ganji, D.D., Rafei, M.: Solitary wave solutions for a generalized Hirota-Satsuma coupled KdV equation by homotopy perturbation method. Phys. Lett. A. 356(2), 131-137 (2006) · Zbl 1160.35517 · doi:10.1016/j.physleta.2006.03.039
[11] Morris, R.M., Kara, A.H., Biswas, A.: An analysis of the Zhiber-Shabat equation including Lie point symmetries and conservation laws. Collect. Math. 67(1), 55-62 (2016) · Zbl 1334.35290 · doi:10.1007/s13348-014-0121-z
[12] Mirzazadeh, M., Eslami, M., Zerrad, E., Mahmood, M.F., Biswas, A., Belic, M.: Optical solitons in nonlinear directional couplers by sine-cosine function method and Bernoulli’s equation approach. Nonlinear Dyn. 81(4), 1933-1949 (2015) · Zbl 1348.78023 · doi:10.1007/s11071-015-2117-y
[13] Eslami, M., Vajargah, B.F., Mirzazadeh, M., Biswas, A.: Application of first integral method to fractional partial differential equations. Indian J. Phys. 88(2), 177-184 (2014) · doi:10.1007/s12648-013-0401-6
[14] Mirzazadeh, M., Arnous, A.H., Mahmood, M.F., Zerrad, E., Biswas, A.: Soliton solutions to resonant nonlinear Schrödinger’s equation with time-dependent coefficients by trial solution approach. Nonlinear Dyn. 81(1-2), 277-282 (2015) · Zbl 1347.35216 · doi:10.1007/s11071-015-1989-1
[15] Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-deVries equation. Phys. Rev. E. 19(19), 1095 (1976) · Zbl 1061.35520
[16] Ablowitz, M.J., Clarkson, P.A.: Soliton, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991) · Zbl 0762.35001 · doi:10.1017/CBO9780511623998
[17] Gu, C.: Soliton Theory and Its Application. NASA STI/Recon Technical Report A 1 (1995) · Zbl 0834.35003
[18] Li, Y., Zhang, J.E.: Darboux transformations of classical Boussinesq system and its multi-soliton solutions. Phys. Lett. A. 284(6), 253-258 (2001) · Zbl 0977.35114 · doi:10.1016/S0375-9601(01)00331-0
[19] Guo, B., Ling, L., Liu, Q.P.: Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. Phys. Rev. E. 85(2), 026607 (2012) · doi:10.1103/PhysRevE.85.026607
[20] Hirota, R.: Exact solutions of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27(18), 1192-1194 (1971) · Zbl 1168.35423 · doi:10.1103/PhysRevLett.27.1192
[21] Hietarinta, J.: A search for bilinear equations passing Hirota’s three-soliton condition. I. KdV-type bilinear equations. J. Math. Phys. 28(8), 1732-1742 (1987) · Zbl 0641.35073 · doi:10.1063/1.527815
[22] Wazwaz, A.M.: Multiple-soliton solutions for the KP equation by Hirota’s bilinear method and by the tanh-coth method. Appl. Math. Comput. 190(1), 633-640 (2007) · Zbl 1243.35148
[23] Wei, G.M., Gao, Y.T., Xu, T., Meng, X.H., Zhang, C.Y.: Painleve’ property and new analytic solutions for a variable-coefficient Kadomtsev-Petviashvili equation with symbolic computation. Chin. Phys. Lett. 25, 1599-1602 (2008)
[24] Yomba, E.: Construction of new soliton-like solutions for the \[(2 ++ 1)\]-dimensional KdV equation with variable coefficients. Chaos Soliton Fract. 21, 75-79 (2004) · Zbl 1049.35165 · doi:10.1016/j.chaos.2003.09.028
[25] Ye, L.Y., Lv, Y.N., Zhang, Y., Jin, H.P.: Grammian solutions to a variable-coefficient KP equation. Chin. Phys. Lett. 25, 357-358 (2008) · doi:10.1088/0256-307X/25/2/002
[26] Abdel-Gawad, H.I., Elazab, N.S., Osman, M.: Exact solutions of space dependent Korteweg-de Vries equation by the extended unified method. J. Phys. Soc. Jpn. 82, 044004 (2013) · doi:10.7566/JPSJ.82.044004
[27] Abdel-Gawad, H.I., Osman, M.: Exact solutions of the Korteweg-de Vries equation with space and time dependent coefficients by the extended unified method. Indian J. Pure Appl. Math. 45(1), 1-11 (2014) · Zbl 1307.35251 · doi:10.1007/s13226-014-0047-x
[28] Abdel-Gawad, H.I., Osman, M.: On shallow water waves in a medium with time-dependent dispersion and nonlinearity coefficients. J. Adv. Res. 6(4), 593-599 (2015) · doi:10.1016/j.jare.2014.02.004
[29] Abdel-Gawad, H.I., Tantawy, M., Osman, M.S.: Dynamic of DNA’s possible impact on its damage. Math. Methods Appl. Sci. 39(2), 168-176 (2016) · Zbl 1334.35356 · doi:10.1002/mma.3466
[30] Wang, Y.Y., Zhang, J.F.: Variable-coefficient KP equation and solitonic solution for two-temperature ions in dusty plasma. Phys. Lett. A. 352(1), 155-162 (2006) · Zbl 1187.35198 · doi:10.1016/j.physleta.2005.11.059
[31] Yomba, E.: Abundant families of Jacobi elliptic function-like solutions for a generalized variable coefficients 2D KdV equation via the extended mapping method. Phys. Lett. A. 349(1), 212-219 (2006) · Zbl 1195.35003 · doi:10.1016/j.physleta.2005.04.100
[32] Li, L.L., Tian, B., Zhang, C.Y., Xu, T.: On a generalized Kadomtsev-Petviashvili equation with variable coefficients via symbolic computation. Phys. Scr. 76(5), 411 (2007) · Zbl 1131.35383 · doi:10.1088/0031-8949/76/5/001
[33] Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991) · Zbl 0762.35001 · doi:10.1017/CBO9780511623998
[34] Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004) · Zbl 1099.35111 · doi:10.1017/CBO9780511543043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.