×

A mixed parallel strategy for the solution of coupled multi-scale problems at finite strains. (English) Zbl 1459.74174

Summary: A mixed parallel strategy for the solution of homogenization-based multi-scale constitutive problems undergoing finite strains is proposed. The approach aims to reduce the computational time and memory requirements of non-linear coupled simulations that use finite element discretization at both scales (FE\(^2\)). In the first level of the algorithm, a non-conforming domain decomposition technique, based on the FETI method combined with a mortar discretization at the interface of macroscopic subdomains, is employed. A master-slave scheme, which distributes tasks by macroscopic element and adopts dynamic scheduling, is then used for each macroscopic subdomain composing the second level of the algorithm. This strategy allows the parallelization of FE\(^2\) simulations in computers with either shared memory or distributed memory architectures. The proposed strategy preserves the quadratic rates of asymptotic convergence that characterize the Newton-Raphson scheme. Several examples are presented to demonstrate the robustness and efficiency of the proposed parallel strategy.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65Y05 Parallel numerical computation

Software:

HYPLAS
Full Text: DOI

References:

[1] Bai Y (2008) Effect of loading history on necking and fracture. PhD thesis, Massachusetts Institute of Technology
[2] Balzani D, Gandhi A, Klawonn A, Lanser M, Rheinbach O, Schröder J (2016) One-way and fully-coupled FE2 methods for heterogeneous elasticity and plasticity problems: parallel scalability and an application to thermo-elastoplasticity of dual-phase steels. Lecture notes in computational science and engineering, vol 113. Springer, Cham, pp. 91-112. doi:10.1007/978-3-319-40528-5_5 · Zbl 0991.74056
[3] Bao Y, Wierzbicki T (2004) On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci 46(1):81-98 · doi:10.1016/j.ijmecsci.2004.02.006
[4] Belytschko T, Song JH (2010) Coarse-graining of multiscale crack propagation. Int J Numer Methods Eng 81(5):537-563 · Zbl 1183.74260
[5] Blanco PJ, Sánchez PJ, de Souza Neto EA, Feijóo Ra (2016) Variational foundations and generalized unified theory of RVE-based multiscale models. Arch Comput Methods Eng 23(2):191-253. doi:10.1007/s11831-014-9137-5 · Zbl 1348.74003 · doi:10.1007/s11831-014-9137-5
[6] de Souza Neto E, Peric D, Owen D (2008) Computational methods for plasticity: theory and applications. Wiley, Chichester
[7] de Souza Neto E, Blanco P, Sánchez P, Feijóo R (2015) An RVE-based multiscale theory of solids with micro-scale inertia and body force effects. Mech Mater 80:136-144 · doi:10.1016/j.mechmat.2014.10.007
[8] de Souza Neto E, Feijóo R (2006) Variational foundations of multi-scale constitutive models of solid:: Small and large strain kinematical formulation. LNCC R&D Report 16/2006, LNCC · Zbl 0731.73031
[9] Farhat C, Roux FX (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Methods Eng 32:1205-1227 · Zbl 0758.65075 · doi:10.1002/nme.1620320604
[10] Farhat C, Lesoinne M, Letallec P, Pierson K, Rixen D (2001) FETI-DP: a dual-primal unified FETI method part I: a faster alternative to the two-level FETI method. Int J Numer Methods Eng 50(7):1523-1544 · Zbl 1008.74076 · doi:10.1002/nme.76
[11] Feyel F, Chaboche JL (2000) FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183:309-330 · Zbl 0993.74062 · doi:10.1016/S0045-7825(99)00224-8
[12] Fritzen F, Leuschner M (2015) Nonlinear reduced order homogenization of materials including cohesive interfaces. Comput Mech 56(1):131-151 · Zbl 1329.74240 · doi:10.1007/s00466-015-1163-0
[13] Fritzen F, Hodapp M, Leuschner M (2014) GPU accelerated computational homogenization based on a variational approach in a reduced basis framework. Comput Methods Appl Mech Eng 278:186-217 · Zbl 1423.74881 · doi:10.1016/j.cma.2014.05.006
[14] Geers M, Kouznetsova V, Brekelmans W (2010) Multi-scale computational homogenization: trends and challenges. J Comput Appl Math 234(7):2175-2182 · Zbl 1402.74107 · doi:10.1016/j.cam.2009.08.077
[15] Ghosh S, Lee K, Raghavan P (2001) A multi-level computational model for multi-scale damage analysis in composite and porous materials. Int J Solids Struct 38(14):2335-2385 · Zbl 1015.74058 · doi:10.1016/S0020-7683(00)00167-0
[16] Gitman I, Askes H, Sluys L (2007) Representative volume: existence and size determination. Eng Fract Mech 74(16):2518-2534 · doi:10.1016/j.engfracmech.2006.12.021
[17] Hernández J, Oliver J, Huespe A, Caicedo M, Cante J (2014) High-performance model reduction techniques in computational multiscale homogenization. Comput Methods Appl Mech Eng 276:149-189 · Zbl 1423.74785 · doi:10.1016/j.cma.2014.03.011
[18] Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40(13-14):3647-3679 · Zbl 1038.74605 · doi:10.1016/S0020-7683(03)00143-4
[19] Kouznetsova V (2002) Computational homogenization for the multi-scale analysis of multi-phase materials. Ph.D. thesis, Technische Universiteit Eindhoven · Zbl 1423.74785
[20] Kouznetsova V, Brekelmans W, Baaijens F (2001) Approach to micro-macro modeling of heterogeneous materials. Comput Mech 27:37-48 · Zbl 1005.74018 · doi:10.1007/s004660000212
[21] Kouznetsova V, Geers M, Brekelmans W (2004) Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Methods Appl Mech Eng 193(48-51):5525-5550 · Zbl 1112.74469 · doi:10.1016/j.cma.2003.12.073
[22] Kuramae H, Ikeya Y, Sakamoto H, Morimoto H, Nakamachi E (2010) Multi-scale parallel finite element analyses of LDH sheet formability tests based on crystallographic homogenization method. Int J Mech Sci 52(2):183-197 · doi:10.1016/j.ijmecsci.2009.09.007
[23] Lacour C, Maday Y (1997) Two different approaches for matching nonconforming grids: the Mortar element method and the Feti method. BIT Numer Math 37(3):720-738 · Zbl 0890.65111 · doi:10.1007/BF02510249
[24] Lloberas-Valls O, Rixen D, Simone A (2012) Multiscale domain decomposition analysis of quasi-brittle heterogeneous materials. Int J Numer Methods Eng 89(11):1337-1366. doi:10.1002/nme.3286 · Zbl 1242.74138 · doi:10.1002/nme.3286
[25] Lloberas-Valls O, Rixen DJ, Simone A, Sluys LJ (2012) On micro-to-macro connections in domain decomposition multiscale methods. Comput Methods Appl Mech Eng 225-228:177-196. doi:10.1016/j.cma.2012.03.022 · Zbl 1253.74093 · doi:10.1016/j.cma.2012.03.022
[26] Malcher L (2012) Continuum modelling and numerical simulation of damage for ductile materials. Ph.D. thesis, Faculdade de Engenharia da Universidade do Porto · Zbl 1423.74881
[27] Matsui K, Terada K, Yuge K (2004) Two-scale finite element analysis of heterogeneous solids with periodic microstructures. Comput Struct 82:593-606 · doi:10.1016/j.compstruc.2004.01.004
[28] Miehe C, Koch A (2002) Computational micro-to-macro transitions of discretized microstructures undergoing small strains. Arch Appl Mech 72:300-317 · Zbl 1032.74010 · doi:10.1007/s00419-002-0212-2
[29] Miehe C, Schotte J, Schröder J (1999a) Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains. Comput Mater Sci 16:372-382 · doi:10.1016/S0927-0256(99)00080-4
[30] Miehe C, Schröder J, Schotte J (1999b) Computational homogenization analysis in finite plasticity Simulation of texture development in polycrystalline materials. Comput Methods Appl Mech Eng 171:387-418 · Zbl 0982.74068 · doi:10.1016/S0045-7825(98)00218-7
[31] Miehe C, Bayreuther CG (2007) On multiscale fe analyses of heterogeneous structures: from homogenization to multigrid solvers. Int J Numer Methods Eng 71(10):1135-1180. doi:10.1002/nme.1972 · Zbl 1194.74443 · doi:10.1002/nme.1972
[32] Mosby M, Matouš K (2015) Hierarchically parallel coupled finite strain multiscale solver for modeling heterogeneous layers. Int J Numer Methods Eng 102(3-4):748-765 · Zbl 1352.74033 · doi:10.1002/nme.4755
[33] Mosby M, Matouš K (2016) Computational homogenization at extreme scales. Extreme Mech Lett 6:68-74 · doi:10.1016/j.eml.2015.12.009
[34] Nguyen VP, Stroeven M, Sluys LJ (2012) Multiscale failure modeling of concrete: micromechanical modeling, discontinuous homogenization and parallel computations. Comput Methods Appl Mech Eng 201-204:139-156 · Zbl 1239.74086 · doi:10.1016/j.cma.2011.09.014
[35] Perić D, Owen D, Honnor M (1992) A model for finite strain elasto-plasticity based on logarithmic strain: computational issues. Comput Methods Appl Mech Eng 94:35-61 · Zbl 0747.73020 · doi:10.1016/0045-7825(92)90156-E
[36] Plews J, Duarte C (2015) Bridging multiple structural scales with a generalized finite element method. Int J Numer Methods Eng 102(3-4):180-201 · Zbl 1352.74425 · doi:10.1002/nme.4703
[37] Popp A (2012) Mortar methods for computational contact mechanics and general interface problems. Ph.D. thesis, Technische Universität München
[38] Popp A, Gee MW, Wall WA (2009) A finite deformation mortar contact formulation using a primal-dual active set strategy. Int J Numer Methods Eng 79(11):1354-1391. doi:10.1002/nme.2614 · Zbl 1176.74133 · doi:10.1002/nme.2614
[39] Popp A, Wohlmuth B, Gee M, Wall W (2012) Dual quadratic mortar finite element methods for 3D finite deformation contact. SIAM J Sci Comput 34(4):421-446 · Zbl 1250.74020 · doi:10.1137/110848190
[40] Popp A, Gitterle M, Gee MW, Wall WA (2010) A dual mortar approach for 3D finite deformation contact with consistent linearization. Int J Numer Methods Eng 83(11):1428-1465. doi:10.1002/nme.2866. arXiv:1010.1724 · Zbl 1202.74183
[41] Puso MA (2004) A 3D mortar method for solid mechanics. Int J Numer Methods Eng 59(3):315-336 · Zbl 1047.74065 · doi:10.1002/nme.865
[42] Puso MA, Laursen TA (2003) Mesh tying on curved interfaces in 3D. Eng Comput 20(3):305-319 · Zbl 1045.65107 · doi:10.1108/02644400310467225
[43] Rahul, De S (2010) An efficient coarse-grained parallel algorithm for global localmultiscale computations onmassively parallel systems. Int J Numer Methods Eng 82(3):379-402 · Zbl 1188.74085
[44] Reis FJP, Andrade Pires FM (2013) An adaptive sub-incremental strategy for the solution of homogenization-based multi-scale problems. Comput Methods Appl Mech Eng 257:164-182 · Zbl 1286.74085 · doi:10.1016/j.cma.2013.01.003
[45] Reis F, Andrade Pires F (2014) A mortar based approach for the enforcement of periodic boundary conditions on arbitrarily generated meshes. Comput Methods Appl Mech Eng 274:168-191 · Zbl 1296.74092 · doi:10.1016/j.cma.2014.01.029
[46] Rheinbach O (2009) Parallel iterative substructuring in structural mechanics. Arch Comput Methods Eng 16(4):425-463 · Zbl 1179.74157 · doi:10.1007/s11831-009-9035-4
[47] Simo JC, Hughes TJR (1998) Computational inelasticity · Zbl 0934.74003
[48] Simo JC, Taylor RL, Wriggers P (1985) A perturbed lagrangian formulation for the finite element solution of contact problems. Comput Methods Appl Mech Eng 50:163-180 · Zbl 0552.73097 · doi:10.1016/0045-7825(85)90088-X
[49] Smit R, Brekelmans W, Meijer H (1998) Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comput Methods Appl Mech Eng 155(1-2):181-192 · Zbl 0967.74069 · doi:10.1016/S0045-7825(97)00139-4
[50] Somer DD, de Souza Neto Ea, Dettmer WG, Perić D (2009) A sub-stepping scheme for multi-scale analysis of solids. Comput Methods Appl Mech Eng 198:1006-1016 · Zbl 1229.74119 · doi:10.1016/j.cma.2008.11.013
[51] Souza Neto, E.; Feijóo, R.; Júnior, MV (ed.); Souza, Neto E. (ed.); Muñoz Rojas, PA (ed.), Variational foundations of large strain multiscale solid constitutive models: kinematical formulation (2010), Weinheim
[52] Stefanica D (2001) A numerical study of FETI algorithms for mortar finite element methods. SIAM J Sci Comput 23(4):1135-1160 · Zbl 0999.65127 · doi:10.1137/S1064827500378829
[53] Stefanica D (2005) Parallel FETI algorithms for mortars. Appl Numer Math 54(2):266-279 · Zbl 1072.65150 · doi:10.1016/j.apnum.2004.09.030
[54] Terada K, Hori M, Kyoya T, Kikuchi N (2000) Simulation of the multi-scale convergence in computational homogenization approaches. Int J Solids Struct 37(16):2285-2311 · Zbl 0991.74056 · doi:10.1016/S0020-7683(98)00341-2
[55] Weber G, Anand L (1990) Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids. Comput Methods Appl Mech Eng 79:173-202 · Zbl 0731.73031 · doi:10.1016/0045-7825(90)90131-5
[56] Wohlmuth BI (2001) Discretization methods and iterative solvers based on domain decomposition. Springer, Berlin · Zbl 0966.65097 · doi:10.1007/978-3-642-56767-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.