×

A Jacobian-free Newton Krylov method for mortar-discretized thermomechanical contact problems. (English) Zbl 1378.74065

Summary: Multibody contact problems are common within the field of multiphysics simulation. Applications involving thermomechanical contact scenarios are also quite prevalent. Such problems can be challenging to solve due to the likelihood of thermal expansion affecting contact geometry which, in turn, can change the thermal behavior of the components being analyzed. This paper explores a simple model of a light water reactor nuclear fuel rod, which consists of cylindrical pellets of uranium dioxide (UO\(_{2})\) fuel sealed within a Zircalloy cladding tube. The tube is initially filled with helium gas, which fills the gap between the pellets and cladding tube. The accurate modeling of heat transfer across the gap between fuel pellets and the protective cladding is essential to understanding fuel performance, including cladding stress and behavior under irradiated conditions, which are factors that affect the lifetime of the fuel.
The thermomechanical contact approach developed here is based on the mortar finite element method, where Lagrange multipliers are used to enforce weak continuity constraints at participating interfaces. In this formulation, the heat equation couples to linear mechanics through a thermal expansion term. Lagrange multipliers are used to formulate the continuity constraints for both heat flux and interface traction at contact interfaces. The resulting system of nonlinear algebraic equations are cast in residual form for solution of the transient problem. A Jacobian-free Newton Krylov method is used to provide for fully-coupled solution of the coupled thermal contact and heat equations.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74M15 Contact in solid mechanics
74F05 Thermal effects in solid mechanics
82D75 Nuclear reactor theory; neutron transport
Full Text: DOI

References:

[1] Flemisch, B.; Puso, M. A.; Wohlmuth, B. I., A new dual mortar method for curved interfaces: Linear elasticity, Int. J. Numer. Methods Eng., 63, 813-832 (2005) · Zbl 1084.74050
[2] M.W. Gee, G.A. Hansen, D. Andrs, Moertel mortar methods package, 2011. Available from: <http://trilinos.sandia.gov/packages/moertel>; M.W. Gee, G.A. Hansen, D. Andrs, Moertel mortar methods package, 2011. Available from: <http://trilinos.sandia.gov/packages/moertel>
[3] Knoll, D. A.; Keyes, D. E., Jacobian-free Newton-Krylov methods: A survey of approaches and applications, J. Comput. Phys., 193, 2, 357-397 (2004) · Zbl 1036.65045
[4] Knoll, D. A.; Rider, W. J., A multigrid preconditioned Newton-Krylov method, SIAM J. Sci. Comput., 21, 691-710 (2000) · Zbl 0952.65102
[5] Arttu Knuutila, Improvements on FRAPCON3/FRAPTRAN mechanical modeling, Technical Report VTT-R-11337-06, VTT, 2006.; Arttu Knuutila, Improvements on FRAPCON3/FRAPTRAN mechanical modeling, Technical Report VTT-R-11337-06, VTT, 2006.
[6] Pacific Northwest National Laboratory, FRAPCON/FRAPTRAN Fuels Performance Analysis Codes. Available from: <http://www.pnl.gov/frapcon3/>; Pacific Northwest National Laboratory, FRAPCON/FRAPTRAN Fuels Performance Analysis Codes. Available from: <http://www.pnl.gov/frapcon3/>
[7] Lassman, K., TRANSURANUS: A fuel rod analysis code ready for use, J. Nucl. Mater., 188, 295-302 (1992)
[8] Laursen, T. A., On the development of thermodynamically consistent algorithms for thermomechanical frictional contact, Comput. Methods Appl. Mech. Eng., 177, 3-4, 273-287 (1999) · Zbl 0992.74055
[9] T.A. Laursen, M.A. Puso, M.W. Heinstein, Practical issues associated with mortar projections in large deformation contact/impact analysis, Technical Report UCRL-JC-148194, Lawrence Livermore National Laboratory, 2002.; T.A. Laursen, M.A. Puso, M.W. Heinstein, Practical issues associated with mortar projections in large deformation contact/impact analysis, Technical Report UCRL-JC-148194, Lawrence Livermore National Laboratory, 2002.
[10] Tod A. Laursen, Formulation and Treatment of Frictional Contact Problems using Finite Elements, Ph.D. dissertation, Stanford University, Department of Mechanical Engineering, 1992.; Tod A. Laursen, Formulation and Treatment of Frictional Contact Problems using Finite Elements, Ph.D. dissertation, Stanford University, Department of Mechanical Engineering, 1992.
[11] Tod A. Laursen, Bin Yang, Michael A. Puso, Implementation of frictional contact conditions in surface to surface, mortar based computational frameworks, in: P. Neittaanmäki, T. Rossi, S. Korotov, E. Oñate, J. Périaux, D. Knörzer (Eds.), ECCOMAS Congress on Computational Methods in Applied Sciences and Engineering, Jyväskylä, Finland, 2004.; Tod A. Laursen, Bin Yang, Michael A. Puso, Implementation of frictional contact conditions in surface to surface, mortar based computational frameworks, in: P. Neittaanmäki, T. Rossi, S. Korotov, E. Oñate, J. Périaux, D. Knörzer (Eds.), ECCOMAS Congress on Computational Methods in Applied Sciences and Engineering, Jyväskylä, Finland, 2004.
[12] McDevitt, T. W.; Laursen, T. A., A mortar-finite element formulation for frictional contact problems, Internat. J. Numer. Methods Eng., 48, 4, 1525-1547 (2000) · Zbl 0972.74067
[13] B. Michel, J. Sercombe, G. Thouvenin, R. Chatelet, 3D fuel cracking modelling in pellet cladding mechanical interaction. Engineering Fracture Mechanics, 75(11):3581-3598, July 2008. Local Approach to Fracture (1986-2006): Selected papers from the 9th European Mechanics of Materials Conference.; B. Michel, J. Sercombe, G. Thouvenin, R. Chatelet, 3D fuel cracking modelling in pellet cladding mechanical interaction. Engineering Fracture Mechanics, 75(11):3581-3598, July 2008. Local Approach to Fracture (1986-2006): Selected papers from the 9th European Mechanics of Materials Conference.
[14] Suzuki Motoe, Saito Hiroaki, Light water reactor fuel analysis code FEMAXI-6: Detailed structure and user’s manual, Technical Report 1, Nippon Genshiryoku Kenkyujo JAERI, 2003.; Suzuki Motoe, Saito Hiroaki, Light water reactor fuel analysis code FEMAXI-6: Detailed structure and user’s manual, Technical Report 1, Nippon Genshiryoku Kenkyujo JAERI, 2003.
[15] Newman, C.; Hansen, G.; Gaston, D., Three dimensional coupled simulation of thermomechanics, heat, and oxygen diffusion in \(UO_2\) nuclear fuel rods, J. Nuclear Mater., 392, 6-15 (2009)
[16] Pernice, M.; Walker, H. F., NITSOL: A Newton iterative solver for nonlinear systems, SIAM J. Sci. Comput., 19, 1, 302-318 (1998) · Zbl 0916.65049
[17] Puso, Michael A.; Laursen, Tod A., A mortar segment-to-segment contact method for large deformation solid mechanics, Comput. Methods Appl. Mech. Eng., 193, 601-629 (2004) · Zbl 1060.74636
[18] Puso, Michael A.; Laursen, Tod A., A mortar segment-to-segment frictional contact method for large deformations, Comput. Methods Appl. Mech. Eng., 193, 4891-4913 (2004) · Zbl 1112.74535
[19] Michael A. Puso, Tod A. Laursen, Jerome Solberg, A 3D frictional segment-to-segment contact method for large deformations and quadratic elements, in: P. Neittaanmäki, T. Rossi, K. Majava, M. Mikkola (Eds.), ECCOMAS Congress on Computational Methods in Applied Sciences and Engineering, Jyväskylä, Finland, 2004.; Michael A. Puso, Tod A. Laursen, Jerome Solberg, A 3D frictional segment-to-segment contact method for large deformations and quadratic elements, in: P. Neittaanmäki, T. Rossi, K. Majava, M. Mikkola (Eds.), ECCOMAS Congress on Computational Methods in Applied Sciences and Engineering, Jyväskylä, Finland, 2004. · Zbl 1169.74627
[20] A.M. Ross, R.L. Stoute, Heat transfer coefficient between \(UO_2\); A.M. Ross, R.L. Stoute, Heat transfer coefficient between \(UO_2\)
[21] Saad, Y., Iterative Methods for Sparse Linear Systems. Iterative Methods for Sparse Linear Systems, The PWS Series in Computer Science (1995), PWS Publishing Company: PWS Publishing Company Boston, MA · Zbl 1002.65042
[22] Sim, Ki Seob; Hwang, Woan; Sohn, Dong Seong; Suk, Ho Chun, The behaviors of the material parameters affecting PCI induced-fuel failure, J. Korean Nuclear Soc., 20, 4, 241-245 (1988)
[23] Paul Van Uffelen, Modelling of nuclear fuel behaviour, Technical Report EUR 22321 EN, European Commission Joint Research Centre Institute for Transuranium Elements Report, 2006.; Paul Van Uffelen, Modelling of nuclear fuel behaviour, Technical Report EUR 22321 EN, European Commission Joint Research Centre Institute for Transuranium Elements Report, 2006.
[24] R.L. Williamson, D.A. Knoll, Enhancing the ABAQUS thermomechanics code to simulate steady and transient fuel rod behavior, in: Proceedings of Top Fuel, Paper 2072, 2009.; R.L. Williamson, D.A. Knoll, Enhancing the ABAQUS thermomechanics code to simulate steady and transient fuel rod behavior, in: Proceedings of Top Fuel, Paper 2072, 2009.
[25] R.L. Williamson, D.A. Knoll, Simulating dynamic fracture in oxide fuel pellets using cohesive zone models, Reactor Technology (SMiRT 20), 2009, pp. 1-10.; R.L. Williamson, D.A. Knoll, Simulating dynamic fracture in oxide fuel pellets using cohesive zone models, Reactor Technology (SMiRT 20), 2009, pp. 1-10.
[26] Wriggers, P., Computational Contact Mechanics (2002), John Wiley and Sons Ltd.: John Wiley and Sons Ltd. West Sussex, England, UK
[27] Zavarise, G.; Wriggers, P.; Stein, E.; Schrefler, B., Real contact mechanisms and finite element formulation – a coupled thermomechanical approach, Int. J. Numer. Methods Eng., 35, 767-786 (1992) · Zbl 0775.73305
[28] Zienkiewicz, Olgierd C.; Taylor, R. L., The Finite Element Method (2005), Butterworth Heinemann: Butterworth Heinemann Oxford · Zbl 1084.74001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.