×

A contact algorithm for cohesive cracks in the extended finite element method. (English) Zbl 07841940

Summary: Cracks with quasibrittle behavior are extremely common in engineering structures. The modeling of cohesive cracks involves strong nonlinearity in the contact, material, and complex transition between contact and cohesive forces. In this article, we propose a novel contact algorithm for cohesive cracks in the framework of the extended finite element method. A cohesive-contact constitutive model is introduced to characterize the complex mechanical behavior of the fracture process zone. To avoid the stress oscillations and ill-conditioned system matrix that often occur in the conventional contact approach, the proposed algorithm employs a special dual Lagrange multiplier to impose the contact constraint. This Lagrange multiplier is constructed by means of the area-weighted average and biorthogonality conditions at the element level. The system matrix can be condensed into a positive definite matrix with an unchanged size at a very low computational cost. In addition, we illustrate solving the cohesive crack contact problem using a novel iteration strategy. Several numerical experiments are performed to illustrate the efficiency and high-quality results of our method in contact analysis of cohesive cracks.
{© 2020 John Wiley & Sons, Ltd.}

MSC:

74Sxx Numerical and other methods in solid mechanics
74Mxx Special kinds of problems in solid mechanics
65Nxx Numerical methods for partial differential equations, boundary value problems
Full Text: DOI

References:

[1] RibeaucourtR, Baietto‐DubourgMC, GravouilA. A new fatigue frictional contact crack propagation model with the coupled X‐FEM/LATIN method. Comput Methods Appl Mech Eng. 2007;196(33-34):3230‐3247. · Zbl 1173.74385
[2] WangX, YuP, YuJ, YuY, LvH. Simulated crack and slip plane propagation in soil slopes with embedded discontinuities using XFEM. Int J Geomech. 2018;18(12):04018170.
[3] DolbowJ, MoësN, BelytschkoT. An extended finite element method for modeling crack growth with frictional contact. Comput Methods Appl Mech Eng. 2001;190(51-52):6825‐6846. · Zbl 1033.74042
[4] TianR, WenLF. Improved XFEM—An extra‐DOF free, well‐conditioning, and interpolating XFEM. Comput Methods Appl Mech Eng. 2015;285:639‐658. · Zbl 1423.74926
[5] TianR, WenLF, WangLX. Three‐dimensional improved XFEM (IXFEM) for static crack problems. Comput Methods Appl Mech Eng. 2019;343:339‐367. · Zbl 1440.74444
[6] KhoeiAR, MoësN. Contact friction modeling with the extended finite element method (X‐FEM). J Mater Process Technol. 2006;177(1):58‐62.
[7] MoësN, DolbowJ, BelytschkoT. A finite element method for crack growth without remeshing. Int J Numer Methods Eng. 1999;46(1):131‐150. · Zbl 0955.74066
[8] MoësN, BelytschkoT. Extended finite element method for cohesive crack growth. Eng Fract Mech. 2002;69(7):813‐833.
[9] JiH, DolbowJ. On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method. Int J Numer Methods Eng. 2004;61(14):2508‐2535. · Zbl 1075.74651
[10] LiuF, BorjaRI. A contact algorithm for frictional crack propagation with the extended finite element method. Int J Numer Methods Eng. 2008;76(10):1489‐1512. · Zbl 1195.74186
[11] HirmandM, VahabM, KhoeiAR. An augmented Lagrangian contact formulation for frictional discontinuities with the extended finite element method. Finite Elem Anal des. 2015;107(2015):28‐43.
[12] GinerE, TurM, TaranconJE, FuenmayorFJ. Crack face contact in X‐FEM using a segment‐to‐segment approach. Int J Numer Methods Eng. 2010;82(11):1424‐1449. · Zbl 1188.74057
[13] MoësN, BechetE, TourbierM. Imposing Dirichlet boundary conditions in the extended finite element method. Int J Numer Methods Eng. 2006;67(12):1641‐1669. · Zbl 1113.74072
[14] BéchetÉ, MoësN, WohlmuthB. A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method. Int J Numer Methods Eng. 2009;78(8):931‐954. · Zbl 1183.74259
[15] LiuF, BorjaRI. Stabilized low‐order finite elements for frictional contact with the extended finite element method. Comput Methods Appl Mech Eng. 2010;199(37-40):2456‐2471. · Zbl 1231.74426
[16] GravouilA, PierresE, BaiettoMC. Stabilized global-local X‐FEM for 3D non‐planar frictional crack using relevant meshes. Int J Numer Methods Eng. 2011;88(13):1449‐1475. · Zbl 1242.74121
[17] FerteG, MassinP, MoesN. Interface problems with quadratic X‐FEM: design of a stable multiplier space and error analysis. Int J Numer Methods Eng. 2014;100(11):834‐870. · Zbl 1352.74350
[18] PoppA, WallWA. Dual mortar methods for computational contact mechanics‐overview and recent developments. GAMM‐Mitteilungen. 2014;37(1):66‐84. · Zbl 1308.74119
[19] PoppA, GeeMW, WallWA. A finite deformation mortar contact formulation using a primal‐dual active set strategy. Int J Numer Methods Eng. 2009;79(11):1354‐1391. · Zbl 1176.74133
[20] PoppA, GitterleM, GeeMW, WallWA. A dual mortar approach for 3D finite deformation contact with consistent linearization. Int J Numer Methods Eng. 2010;83(11):1428‐1465. · Zbl 1202.74183
[21] PoppA, WohlmuthBI, GeeMW, WallWA. Dual quadratic mortar finite element methods for 3D finite deformation contact. SIAM J Sci Comput.2012;34(4):B421‐B446. · Zbl 1250.74020
[22] ZhengAX, LuoXQ. A mathematical programming approach for frictional contact problems with the extended finite element method. Arch Appl Mech. 2016;86(4):599‐616.
[23] KhoeiAR, BahmaniB. Application of an enriched FEM technique in thermo‐mechanical contact problems. Comput Mech. 2018;62(5):1127‐1154. · Zbl 1464.74184
[24] ChengH, ZhouX. New technique for frictional contact on crack slip in the extended finite‐element method framework. J Eng Mech. 2018;144(8):04018059.
[25] RivasE, Parchei‐EsfahaniM, GracieR. A two‐dimensional extended finite element method model of discrete fracture networks. Int J Numer Methods Eng. 2019;117(13):1263‐1282. · Zbl 07865165
[26] BazantZP, LinFB. Nonlocal smeared cracking model for concrete fracture. J Struct Eng. 1988;114(11):2493‐2510.
[27] HillerborgA, ModeerM, PeterssonPE. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res. 1976;6(6):773‐782.
[28] DocaT, Andrade PiresFM, Cesar de SaJMA. A frictional mortar contact approach for the analysis of large inelastic deformation problems. Int J Solids Struct. 2014;51(9):1697‐1715.
[29] KarihalooBL, XiaoQZ. Asymptotic fields at the tip of a cohesive crack. Int J Fract. 2008;150(1):55‐74. · Zbl 1298.74206
[30] SukumarN, MoesN, MoranB, BelytschkoT. Extended finite element method for three‐dimensional crack modelling. Int J Numer Methods Eng. 2000;48(11):1549‐1570. · Zbl 0963.74067
[31] AreiasP, BelytschkoT. Analysis of three‐dimensional crack initiation and propagation using the extended finite element method. Int J Numer Methods Eng. 2005;63(5):760‐788. · Zbl 1122.74498
[32] WohlmuthBI. A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J Numer Anal. 2000;38(3):989‐1012. · Zbl 0974.65105
[33] NistorI, GuitonMLE, MassinP, MoësN, GéniautS. An X‐FEM approach for large sliding contact along discontinuities. Int J Numer Methods Eng. 2009;78(12):1407‐1435. · Zbl 1183.74301
[34] PoppA, SeitzA, GeeMW, WallWA. Improved robustness and consistency of 3D contact algorithms based on a dual mortar approach. Comput Methods Appl Mech Eng. 2013;264(2013):67‐80. · Zbl 1286.74106
[35] ZhouM, ZhangB, PengC, WuW. Three‐dimensional numerical analysis of concrete‐faced rockfill dam using dual‐mortar finite element method with mixed tangential contact constraints. Int J Numer Anal Methods Geomech.2016;40(15):2100‐2122.
[36] ZhouM, ZhangB, PengC. Numerical evaluation of soft inter‐slab joint in concrete‐faced rockfill dam with dual mortar finite element method. Int J Numer Anal Methods Geomech. 2018;42(5):781‐805.
[37] SitzmannS, WillnerK, WohlmuthBI. A dual Lagrange method for contact problems with regularized frictional contact conditions: modelling micro slip. Comput Methods Appl Mech Eng. 2015;285(2015):468‐487. · Zbl 1423.74141
[38] HintermullerM, ItoK, KunischK. The primal‐dual active set strategy as a semismooth Newton method. SIAM J Optim. 2003;13(3):865‐888. · Zbl 1080.90074
[39] HueberS, WohlmuthBI. A primal‐dual active set strategy for non‐linear multibody contact problems. Comput Methods Appl Mech Eng. 2005;194(27-29):3147‐3166. · Zbl 1093.74056
[40] HueberS, StadlerG, WohlmuthBI. A primal‐dual active set algorithm for three‐dimensional contact problems with coulomb friction. SIAM J Sci Comput. 2008;30(2):572‐596. · Zbl 1158.74045
[41] SimoJC, WriggersP, TaylorRL. A perturbed Lagrangian formulation for the finite element solution of contact problems. Comput Methods Appl Mech Eng. 1985;50(2):163‐180. · Zbl 0552.73097
[42] YuTT. Considering contact conditions between discontinuity surfaces in extended finite element method (XFEM). Int J Numer Methods Biomed Eng. 2011;27(6):899‐908. · Zbl 1387.74118
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.