×

MPDATA: an edge-based unstructured-grid formulation. (English) Zbl 1070.65080

Summary: We present an advancement in the evolution of multidimensional positive definite advection transport algorithm (MPDATA). Over the last two decades, MPDATA has proven to be successful in applications using single-block structured cuboidal meshes (viz. Cartesian meshes), while employing homeomorphic mappings to accommodate time-dependent curvilinear domains. Motivated by the strengths of the Cartesian-mesh MPDATA, we develop a new formulation in an arbitrary finite-volume framework with a fully unstructured polyhedral hybrid mesh. In MPDATA, as in any Taylor-series based integration method for partial differential equations, the choice of data structure has a pronounced impact on the technical details of the algorithm.
Aiming at a broad range of applications with a large number of control-volume cells, we select a general, compact and computationally efficient, edge-based data structure. This facilitates the use of MPDATA for problems involving complex geometries and/or inhomogeneous anisotropic flows where mesh adaptivity is advantageous.
In this paper, we describe the theory and implementation of the basic finite-volume MPDATA, and document extensions important for applications: a fully monotone scheme, diffusion scheme, and generalization to complete flow solvers. Theoretical discussions are illustrated with benchmark results in two and three spatial dimensions.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35L45 Initial value problems for first-order hyperbolic systems
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs

Software:

MPDATA
Full Text: DOI

References:

[1] Test cases for inviscid flow field methods, AGARD Advisory Report 1985, No 211 AGARD-AR-211; Test cases for inviscid flow field methods, AGARD Advisory Report 1985, No 211 AGARD-AR-211
[2] Bacon, D. P., A dynamically adapting weather and dispersion model: the operational environment model with grid adaptivity (OMEGA), Mon. Weather Rev., 128, 2044-2076 (2000)
[3] T.J. Barth. Aspects of unstructured grids and finite volume solvers for the Euler and Navier-Stokes equations, in: Special Course on Unstructured Grid Methods for Advection Dominated Flows, AGARD Report 787, 1992, pp. 6.1-6.61; T.J. Barth. Aspects of unstructured grids and finite volume solvers for the Euler and Navier-Stokes equations, in: Special Course on Unstructured Grid Methods for Advection Dominated Flows, AGARD Report 787, 1992, pp. 6.1-6.61
[4] Domaradzki, J. A.; Xiao, Z.; Smolarkiewicz, P. K., Effective eddy viscosities in implicit large eddy simulations of turbulent flows, Phys. Fluids, 15, 3890-3893 (2003) · Zbl 1186.76146
[5] Domaradzki, J. A.; Adams, N. A., Direct modelling of subgrid scales of turbulence in large eddy simulation, J. Turbul., 3, 1-19 (2002)
[6] Dukowicz, J. K.; Ramshaw, J. D., Tensor viscosity method for convection in numerical fluid dynamics, J. Comput. Phys., 32, 3890-3893 (1979) · Zbl 0408.76001
[7] Grabowski, W. W.; Smolarkiewicz, P. K., Monotone finite-difference approximations to the advection-condensation problem, Mon. Weather Rev., 118, 2082-2097 (1990)
[8] A. Jameson, W. Schmidt, E. Turkel, Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes, AIAA June 1981, Paper 81-1259; A. Jameson, W. Schmidt, E. Turkel, Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes, AIAA June 1981, Paper 81-1259
[9] Lilly, D. K., A proposed modification of the Germano subgrid-scale closure method, Phys. Fluids A, 4, 633-635 (1992)
[10] Lohner, R.; Morgan, K.; Zienkiewicz, O. C., An adaptive finite element procedure for high speed flows, Comput. Meth. Appl. Mech. Eng., 51, 441-465 (1985) · Zbl 0568.76074
[11] Margolin, L. G.; Smolarkiewicz, P. K., Antidiffusive velocities for multipass donor cell advection, SIAM J. Sci. Comput., 20, 3, 907-929 (1998) · Zbl 0922.76255
[12] Margolin, L. G.; Rider, W. J., A rationale for implicit turbulence modeling, Int. J. Numer. Meth. Fluids, 39, 799-819 (2002)
[13] Margolin, L. G.; Shashkov, M., Second-order sign-preserving conservative interpolation (remapping) on general grids, J. Comput. Phys., 184, 266-298 (2003) · Zbl 1016.65004
[14] Margolin, L. G.; Smolarkiewicz, P. K.; Wyszogrodzki, A. A., Implicit turbulence modeling for high Reynolds number flows, J. Fluids Eng., 124, 862-867 (2002)
[15] Maurin, K., Analysis Part I: Elements (1976), Reidel: Reidel Boston, 430pp
[16] Mavriplis, D. J., Three dimensional unstructured multigrid for the Euler equations, AIAA J., 30, 7, 1753-1761 (1992) · Zbl 0759.76044
[17] Prusa, J. M.; Smolarkiewicz, P. K., An all-scale anelastic model for geophysical flows: dynamic grid deformation, J. Comput. Phys., 190, 601-622 (2003) · Zbl 1076.86001
[18] P.L. Roe, Error estimates for cell-vertex solutions of the compressible Euler equations, ICASE Report No. 87-6, 1987, 40pp; P.L. Roe, Error estimates for cell-vertex solutions of the compressible Euler equations, ICASE Report No. 87-6, 1987, 40pp
[19] Roache, P. J., Computational Fluid Dynamics (1972), Hermosa Publishers: Hermosa Publishers Albuquerque, 446 pp · Zbl 0251.76002
[20] Schär, C.; Smolarkiewicz, P. K., A synchronous and iterative flux-correction formalism for coupled transport equations, J. Comput. Phys., 128, 101-120 (1996) · Zbl 0861.76054
[21] Y.S. Sedunov, (P. Greenberg (Ed.)), Physics of Drop Formation in the Atmosphere, 1974, 234 pp. (Israel Program for Sci. Transl.); Y.S. Sedunov, (P. Greenberg (Ed.)), Physics of Drop Formation in the Atmosphere, 1974, 234 pp. (Israel Program for Sci. Transl.)
[22] Smolarkiewicz, P. K., A simple positive definite advection scheme with small implicit diffusion, Mon. Weather Rev., 111, 479-486 (1983)
[23] Smolarkiewicz, P. K., A fully multidimensional positive definite advection transport algorithm with small implicit diffusion, J. Comput. Phys., 54, 325-362 (1984)
[24] Smolarkiewicz, P. K.; Clark, T. L., The multidimensional positive definite advection transport algorithm: further development and applications, J. Comput. Phys., 67, 396-438 (1986) · Zbl 0601.76098
[25] Smolarkiewicz, P. K.; Grabowski, W. W., The multidimensional positive definite advection transport algorithm: nonoscillatory option, J. Comput. Phys., 86, 355-375 (1990) · Zbl 0698.76100
[26] Smolarkiewicz, P. K., On forward-in-time differencing for fluids, Mon. Weather. Rev., 119, 2505-2510 (1991)
[27] P.K. Smolarkiewicz, Nonoscillatory advection schemes, in: Numerical Methods in Atmospheric Models, Proceedings of Seminar on Numerical Methods in Atmospheric Models, ECMWF, Reading, UK, 9-13 September, 1991, p. 235; P.K. Smolarkiewicz, Nonoscillatory advection schemes, in: Numerical Methods in Atmospheric Models, Proceedings of Seminar on Numerical Methods in Atmospheric Models, ECMWF, Reading, UK, 9-13 September, 1991, p. 235
[28] Smolarkiewicz, P. K.; Margolin, L. G., On forward-in-time differencing for fluids: extension to a curvilinear framework, Mon. Weather Rev., 121, 1847-1859 (1993)
[29] Smolarkiewicz, P. K.; Grubišić, V.; Margolin, L. G., On forward-in-time differencing for fluids: stopping criteria for iterative solutions of anelastic pressure equations, Mon. Weather Rev., 125, 647-654 (1997)
[30] Smolarkiewicz, P. K.; Margolin, L. G., MPDATA: a finite difference solver for geophysical flows, J. Comput. Phys., 140, 459-480 (1998) · Zbl 0935.76064
[31] Smolarkiewicz, P. K.; Margolin, L. G.; Wyszogrodzki, A. A., A class of nonhydrostatic global models, J. Atmos. Sci., 58, 349-364 (2001)
[32] Smolarkiewicz, P. K.; Prusa, J. M., VLES modeling of geophysical fluids with nonoscillatory forward-in-time schemes, Int. J. Numer. Meth. Fluids, 39, 799-819 (2002) · Zbl 1101.76346
[33] Smolarkiewicz, P. K.; Prusa, J. M., Forward-in-time differencing for fluids: simulation of geophysical turbulence, (Drikakis, D.; Guertz, B. J., Turbulent Flow Computation (2002), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 207-240 · Zbl 1087.76054
[34] Strang, G., On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 506-517 (1968) · Zbl 0184.38503
[35] J. Szmelter, P.K. Smolarkiewicz, A low-implicit-diffusion flow solver for unstructured meshes, AIAA-2005-0321, January, 2005; J. Szmelter, P.K. Smolarkiewicz, A low-implicit-diffusion flow solver for unstructured meshes, AIAA-2005-0321, January, 2005 · Zbl 1070.65080
[36] Wedi, N. P.; Smolarkiewicz, P. K., Extending Gal-Chen and Somerville terrain-following coordinate transformation on time dependent curvilinear boundaries, J. Comput. Phys., 193, 1-20 (2004) · Zbl 1117.76307
[37] Zalesak, S. T., Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys., 31, 335-362 (1979) · Zbl 0416.76002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.