×

Extending Gal-Chen and Somerville terrain-following coordinate transformation on time-dependent curvilinear boundaries. (English) Zbl 1117.76307

Summary: The classical terrain-following coordinate transformation of Gal-Chen and Somerville has been extended to a broad class of time-dependent vertical domains. We provide explicit formulae for the associated transformation coefficients which are readily applicable to numerical implementations. The proposed extension facilitates modeling of undulating boundaries in various areas of computational fluid dynamics. The implementation is discussed in the context of a nonhydrostatic anelastic model for simulations of atmospheric and oceanic flows. The theoretical development is illustrated with numerical simulations of idealized flows. We also discuss an example of a practical application which incorporates a long-wave-approximation for a finite-amplitude free-surface upper boundary, directly relevant to ocean models.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76B70 Stratification effects in inviscid fluids
86A10 Meteorology and atmospheric physics
86A05 Hydrology, hydrography, oceanography
86-08 Computational methods for problems pertaining to geophysics
Full Text: DOI

References:

[1] Anderson, D. A.; Tannehill, J. C.; Pletcher, R. H., Computational Fluid Mechanics and Heat Transfer (1984), Hemisphere Publ. Corp: Hemisphere Publ. Corp New York · Zbl 0569.76001
[2] Bleck, R., Short range prediction in isentropic coordinates with filtered and unfiltered numerical models, Mon. Wea. Rev., 102, 813-829 (1974)
[3] Bleck, R.; Smith, L. T., A wind-driven isopycnic coordinate model of the north and equatorial Atlantic Ocean. I: Model development and supporting experiments, J. Geophys. Res., 95C, 3273-3285 (1990)
[4] Bougeault, Ph., A non-reflective upper boundary condition for limited-height hydrostatic models, Mon. Wea. Rev., 111, 229-247 (1983)
[5] Gal-Chen, T.; Somerville, C. J., On the use of a coordinate transformation for the solution of the Navier-Stokes equations, J. Comp. Phys., 17, 209-228 (1975) · Zbl 0297.76020
[6] Casulli, V.; Cheng, R. T., Semi-implicit finite difference methods for three dimensional shallow water flow, Int. J. Numer. Meth. Fluids, 15, 629-648 (1992) · Zbl 0762.76068
[7] Casulli, V., A semi-implicit finite difference method for non-hydrostatic, free surface flows, Int. J. Numer. Meth. Fluids, 30, 425-440 (1999) · Zbl 0944.76050
[8] Chu, P. C., Two kinds of predictability in the Lorenz system, J. Atmos. Sci., 56, 1427-1432 (1999)
[9] Clark, T. L., A small scale dynamic model using a terrain following coordinate transformation, J. Comp. Phys., 24, 186-215 (1977) · Zbl 0369.76025
[10] Clark, T. L.; Farley, R. D., Severe downslope windstorm calculations in two and three spatial dimensions using anelastic interactive grid nesting: a possible mechanism for gustiness, J. Atmos. Sci., 41, 329-350 (1984)
[11] Clark, T. L.; Miller, M., Pressure drag and momentum fluxes due to the Alps. II: Representation in large- scale atmospheric models, Q. J. R. Meteorol. Soc., 117, 527-552 (1991)
[12] Dutton, J. A., The Ceaseless Wind (1986), Dover Publications Inc
[13] H. Freudenthal, Dictionary of Scientific Biography, C.C. Gillispie, New York, Scribner & Sons, vol. I-XVI (1970-1980); H. Freudenthal, Dictionary of Scientific Biography, C.C. Gillispie, New York, Scribner & Sons, vol. I-XVI (1970-1980)
[14] Gill, A., Atmosphere-Ocean Dynamics (1982), Academic Press: Academic Press London
[15] Givoli, D., Non-reflecting boundary conditions, J. Comp. Phys., 94, 1-29 (1991) · Zbl 0731.65109
[16] Gresho, P.; Sani, R., On pressure boundary conditions for the incompressible Navier-Stokes equations, Int. J. Numer. Meth. Fluids, 1111-1145 (1987) · Zbl 0644.76025
[17] Grosch, C.; Orszag, S., Numerical solution of problems in unbounded regions: coordinate transforms, J. Comp. Phys., 25, 273-295 (1977) · Zbl 0403.65050
[18] Herzog, H.-J., Testing a radiative upper boundary condition in a nonlinear model with hybrid vertical coordinate, Meteorol. Atoms. Phys., 55, 185-204 (1995)
[19] Higdon, R. L., A two-level time-stepping method for layered ocean circulation models, J. Comput. Phys., 177, 59-94 (2002) · Zbl 1120.86300
[20] Hsu, Y.-J. G.; Arakawa, A., Numerical modeling of the atmosphere with an isentropic vertical coordinate, Mon. Wea. Rev., 118, 1933-1959 (1990)
[21] Iskandarani, M.; Haidvogel, D. B.; Levin, J., A three-dimensional spectral element model for the solution of the hydrostatic primitive equations, J. Comput. Phys., 186, 397-425 (2003) · Zbl 1047.76089
[22] Houghton, D.; Kasahara, A., Nonlinear shallow fluid flow over an isolated ridge, Comm. Pure Appl. Math., 21, 1-23 (1968) · Zbl 0159.57404
[23] ISI Web of Science, wos.mimas.ac.uk; ISI Web of Science, wos.mimas.ac.uk
[24] Kasahara, A., Various vertical coordinate systems used for numerical weather prediction, Mon. Wea. Rev., 102, 509-522 (1974)
[25] Klemp, J. B.; Durran, D. R., An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models, Mon. Wea. Rev., 111, 430-444 (1983)
[26] Klemp, J. B.; Skamarock, W. C.; Fuhrer, O., Numerical consistency of metric terms in terrain-following coordinates, Mon. Wea. Rev., 131, 1229-1239 (2003)
[27] Konor, C. S.; Arakawa, A., Design of an atmospheric model based on a generalized vertical coordinate, Mon. Wea. Rev., 125, 1649-1673 (1997)
[28] Lamb, H., Hydrodynamics (1975), Cambridge University Press: Cambridge University Press New York, London · JFM 26.0868.02
[29] Laprise, R., The Euler equations of motion with hydrostatic pressure as an independent variable, Mon. Wea. Rev., 120, 197-207 (1992)
[30] Lindzen, R.; Batten, E.; Kine, J., Oscillations in atmospheres with tops, Mon. Wea. Rev., 96, 133-140 (1968)
[31] Lipps, F. B.; Hemler, R. S., A scale analysis of deep moist convection and some related numerical calculations, J. Atmos. Sci., 39, 2192-2210 (1982)
[32] Madala, R. V.; Piacsek, S. A., A semi-implicit numerical model for baroclinic oceans, J. Comp. Phys., 23, 167-178 (1977)
[33] Milne-Thomson, L. M., Theoretical Hydrodynamics (1968), The MacMillan Press Ltd · Zbl 0164.55802
[34] Nadiga, B. T.; Margolin, L. G.; Smolarkiewicz, P. K., Different approximations of shallow fluid flow over an obstacle, Phys. Fluids, 8, 2066-2077 (1996) · Zbl 1082.76509
[35] Namin, M. M.; Lin, B.; Falconer, R. A., An implicit numerical algorithm for solving non-hydrostatic free-surface flow problems, Int. J. Numer. Meth. Fluids, 35, 341-356 (2001) · Zbl 1008.76065
[36] Nicoud, F.; Schönfeld, T., Integral boundary conditions for unsteady biomedical CFD applications, Int. J. Numer. Meth. Fluids, 40, 457-465 (2002) · Zbl 1061.76517
[37] Phillips, N. A., A coordinate system having some special advantages for numerical forecasting, J. Meteor., 14, 184-185 (1957)
[38] Phillips, N. A., Dispersion in large scale weather prediction, WMO Sixth IMO lecture, 700, 97 (1990)
[39] Prusa, J. M.; Smolarkiewicz, P. K.; Garcia, R. R., On the propagation and breaking at high altitudes of gravity waves excited by tropospheric forcing, J. Atmos. Sci., 53, 2186-2216 (1996)
[40] Prusa, J. M.; Smolarkiewicz, P. K., An all-scale anelastic model for geophysical flows: dynamic grid deformation, J. Comput. Phys., 190, 601-622 (2003) · Zbl 1076.86001
[41] Prusa, J. M.; Smolarkiewicz, P. K.; Wyszogrodzki, A. A., Simulations of gravity wave induced turbulence using 512 PE CRAY T3E, Int. J. Appl. Math. Comp. Sci., 2186-2216 (2001) · Zbl 1057.76538
[42] Richtmyer, R. D.; Morton, K. W., Difference Methods for Initial-Value Problems (1967), Wiley-Interscience: Wiley-Interscience New York · Zbl 0155.47502
[43] Riemann, B., On the hypotheses which lie at the basis of geometry, Nature, VIII, May (1873) · JFM 26.0645.03
[44] Rotunno, R.; Smolarkiewicz, P. K., Vorticity generation in the shallow-water equations as applied to hydraulic jumps, J. Atmos. Sci., 52, 320-330 (1995)
[45] Schär, C.; Leuenberger, D.; Fuhrer, O.; Lüthi, D.; Girard, C., A new terrain-following vertical coordinate formulation for atmospheric prediction models, Mon. Wea. Rev., 130, 2459-2480 (2002)
[46] Simmons, A. J.; Burridge, D. M., An energy and angular momentum conserving vertical finite difference scheme and hybrid vertical coordinates, Mon. Wea. Rev., 109, 758-766 (1981)
[47] Skamarock, W. C.; Smolarkiewicz, P. K.; Klemp, J. B., Preconditioned conjugate-residual solvers for Helmholtz equations in nonhydrostatic models, Mon. Wea. Rev., 125, 587-599 (1997)
[48] Smolarkiewicz, P. K.; Grell, G. A., A class of monotone interpolation schemes, J. Comput. Phys., 101, 431-440 (1992) · Zbl 0761.65005
[49] Smolarkiewicz, P. K.; Pudykiewicz, J. A., A class of semi-Lagrangian approximations for fluids, J. Atmos. Sci., 49, 2082-2096 (1992)
[50] Smolarkiewicz, P. K.; Margolin, L. G., On forward-in-time differencing for fluids: extension to a curvilinear framework, Mon. Wea. Rev., 121, 1847-1859 (1993)
[51] Smolarkiewicz, P. K.; Margolin, L. G., On forward-in-time differencing for fluids: an Eulerian/semi-Lagrangian non-hydrostatic model for stratified flows, Atmos. Ocean Special, 35, 127-152 (1997)
[52] P.K. Smolarkiewicz, V. Grubišić, L.G. Margolin, A.A. Wyszogrodzki, Forward-in-time differencing for fluids: nonhydrostatic modeling of fluid motions on a sphere, in: Proc. 1998 Seminar on Recent Developments in Numerical Methods for Atmospheric Modeling, Reading, UK, ECMWF, 1999, pp. 21-43; P.K. Smolarkiewicz, V. Grubišić, L.G. Margolin, A.A. Wyszogrodzki, Forward-in-time differencing for fluids: nonhydrostatic modeling of fluid motions on a sphere, in: Proc. 1998 Seminar on Recent Developments in Numerical Methods for Atmospheric Modeling, Reading, UK, ECMWF, 1999, pp. 21-43
[53] Smolarkiewicz, P. K.; Margolin, L. G., MPDATA: A finite difference solver for geophysical flows, J. Comput. Phys., 140, 459-480 (1998) · Zbl 0935.76064
[54] Smolarkiewicz, P. K.; Margolin, L. G., Variational solver for elliptic problems in atmospheric flows, Appl. Math. Comp. Sci., 4, 527-551 (1994) · Zbl 0849.76052
[55] Smolarkiewicz, P. K.; Prusa, J. M., Forward-in-time differencing for fluids: simulation of geophysical turbulence, (Drikakis, D.; Guertz, B. J., Turbulent Flow Computation (2002), Kluwer Academic Publishers), 207-240 · Zbl 1087.76054
[56] Smolarkiewicz, P. K.; Margolin, L. G.; Wyszogrodzki, A. A., A class of nonhydrostatic global models, J. Atmos. Sci., 58, 349-364 (2001)
[57] Suarez, M. J.; Arakawa, A.; Randall, D. A., Parameterization of the planetary boundary layer in the UCLA general circulation model: formulation and results, Mon. Wea. Rev., 111, 2224-2243 (1983)
[58] Trenberth, K. E.; Stepaniak, D. P., A pathological problem with NCEP reanalyses in the stratosphere, J. Climate, 15, 690-695 (2002)
[59] Ucellini, L. W.; Johnson, D. R.; Schlesinger, R. E., An isentropic and sigma coordinate hybrid numerical model: model development and some initial tests, J. Atmos. Sci., 36, 390-413 (1979)
[60] Welch, W. T.; Smolarkiewicz, P. K.; Rotunno, R.; Boville, B. A., The large-scale effects of flow over periodic mesoscale topography, J. Atmos. Sci., 58, 1477-1492 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.