×

Computational algorithms for FE formulations involving fractional operators. (English) Zbl 0616.73066

This paper considers the development of transient solution algorithms for finite element simulations of viscoelastic problems involving fractional integrodifferential operators. Specifically, numerical approximations are developed for the Grunwald-Liouville-Riemann formalism. This includes establishing formal error estimations. Based on the numerical representations of the fractional operators, implicit, explicit and predictor corrector type transient algorithms are derived for viscoelastic finite element simulations. To illustrate their computational properties, the results of several numerical benchmark experiments are presented. These emphasize the efficiency and stability of the various algorithms developed.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65R20 Numerical methods for integral equations
45J05 Integro-ordinary differential equations
47Gxx Integral, integro-differential, and pseudodifferential operators
Full Text: DOI

References:

[1] Artin, E. (1964): The gamma function. New York: Holt Rinehart and Winston · Zbl 0144.06802
[2] Bagley, R. L.; Torvik, P.J. (1983): A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheology 27, 201-210 · Zbl 0515.76012 · doi:10.1122/1.549724
[3] Bagley, R.L.; Torvik, P.J. (1983): Fractional calculus ? a different approach to the analysis of viscoelasticity damped structures. AIAA J. 21, 741-748 · Zbl 0514.73048 · doi:10.2514/3.8142
[4] Bagley, R.L.; Torvik, P.J. (1985): Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA J. 23, 918-925 · Zbl 0562.73071 · doi:10.2514/3.9007
[5] Bathe, K.J. (1984): Finite element procedures in engineering analysis. New Jersey: Prentice Hall · Zbl 0537.73098
[6] Caputo, M. (1976): Vibrations of an infinite plate with a frequency independent Q. J. Accoustical Soc. of America 60, 634 · doi:10.1121/1.381126
[7] Courant, R.; Hilbert, D. (1962): Methods of mathematical physics. New York: Interscience · Zbl 0099.29504
[8] Duff, G.F.D. (1956): Partial differential equations. Toronto: University of Toronto Press · Zbl 0071.30903
[9] Guyan, R.J. (1965): Reduction of stiffness and mass matrices. AIAA J. 3, 380 · doi:10.2514/3.2874
[10] Grunwald, A.K. (1867): Über begrenzte Deviationen und deren Anwendung. Z. Angew, Math Phys. 12, 441
[11] Hildebrand, F.B. (1968): Finite difference equations and simulations. New Jersey: Prentice Hall · Zbl 0157.22702
[12] Knopp, K. (1945): Theory of functions. New York: Dover
[13] Malvern, L.E. (1981): Introduction to the mechanics of a continuous medium. New Jersey: Prentice Hall
[14] Padovan, J. (1976): On solutions to multiply connected nonself-adjoint systems subject to deterministic and nondeterministic excitations. Intern. J: Eng. Sci. 14, 819 · Zbl 0346.35086 · doi:10.1016/0020-7225(76)90067-7
[15] Padovan, J. (1978): On gyroscopic problems in elasticity. Intern. J. Eng. Sci. 16, 1061 · Zbl 0392.73026 · doi:10.1016/0020-7225(78)90061-7
[16] Ross, B. (1975): Lecture notes in mathematics. Berlin, Heidelberg, New York: Springer 457, 1-36
[17] Riesz, M. (1949): L’integral de Riemann-Liouville et le probleme de Cauchy. Acta. Math. 81, 1 · Zbl 0033.27601 · doi:10.1007/BF02395016
[18] Sneddon, I.N. (1972): The use of integral transforms. New York: McGraw Hill · Zbl 0237.44001
[19] Zienkiewicz, B.C. (1984): The finite element method. New York: McGraw Hill · Zbl 0551.76002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.