×

Decentralized adaptive output-feedback control of interconnected nonlinear time-delay systems using minimal neural networks. (English) Zbl 1380.93009

Summary: This paper presents a minimal-neural-networks-based design approach for the decentralized output-feedback tracking of uncertain interconnected strict-feedback nonlinear systems with unknown time-varying delayed interactions unmatched in control inputs. Compared with existing approximation-based decentralized output-feedback designs using multiple neural networks for each subsystem in lower triangular form, the main contribution of this paper is to provide a new recursive backstepping strategy for a local memoryless output-feedback controller design using only one neural network for each subsystem regardless of the order of subsystems, unmeasurable states, and unknown unmatched and delayed nonlinear interactions. In the proposed strategy, error surfaces are designed using unmeasurable states instead of measurable states and virtual controllers are regarded as intermediate signals for designing a local control law at the last step. Using Lyapunov stability theorem and the performance function technique, it is shown that all signals of the total controlled closed-loop system are bounded and the transient and steady-state performance bounds of local tracking errors can be preselected by adjusting design parameters independent of delayed interactions.

MSC:

93A14 Decentralized systems
93C40 Adaptive control/observation systems
93B52 Feedback control
93C10 Nonlinear systems in control theory
92B20 Neural networks for/in biological studies, artificial life and related topics
Full Text: DOI

References:

[1] Bechlioulis, C. P.; Rovithakis, G. A., Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance, IEEE Trans. Autom. Control, 53, 9, 2090-2099 (2008) · Zbl 1367.93298
[2] Bechlioulis, C. P.; Rovithakis, G. A., Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems, Automatica, 45, 2, 532-538 (2009) · Zbl 1158.93325
[3] Chou, C. H.; Cheng, C. C., A decentralized model reference adaptive variable structure controller for large-scale time-varying delay systems, IEEE Trans. Autom. Control, 48, 7, 523-537 (2004)
[4] Chen, W.; Li, J., Decentralized output-feedback neural control for systems with unknown interconnections, IEEE Trans. Syst. Man Cybern. B Cybern., 38, 1, 258-266 (2008)
[5] Chen, C. L.P.; Liu, Y. J.; Wen, G. X., Fuzzy neural network-based adaptive control for a class of uncertain nonlinear stochastic systems, IEEE Trans. Cybern., 44, 5, 583-593 (2014)
[6] Chen, C. L.P.; Wen, G. X.; Liu, Y. J.; Liu, Z., Observer-based adaptive backstepping consensus tracking control for high-order nonlinear semi-strict-feedback multiagent systems, IEEE Trans. Cybern., 46, 7, 1591-1601 (2016)
[7] Choi, Y. H.; Yoo, S. J., Single-approximation-based adaptive control of a class of nonlinear time-delay systems, Neural Comput. Appl., 27, 4, 1041-1052 (2016)
[8] Choi, Y. H.; Yoo, S. J., Minimal-approximation-based decentralized backstepping control of interconnected time-delay systems, IEEE Trans. Cybern., 46, 12, 3401-3413 (2016)
[9] Ge, S. S.; Hang, C. C.; Lee, T. H.; Zhang, T., Stable Adaptive Neural Network Control (2001), Kluwer: Kluwer Norwell, MA · Zbl 1001.93002
[10] Ge, S. S.; Hong, F.; Lee, T. H., Robust adaptive control of nonlinear systems with unknown time delays, Automatica, 41, 7, 1181-1190 (2005) · Zbl 1078.93046
[11] Ge, S. S.; Tee, K. P., Approximation-based control of nonlinear MIMO time-delay systems, Automatica, 43, 1, 31-43 (2007) · Zbl 1137.93042
[12] Hua, C.; Wang, Q. G.; Guax, X., Exponential stabilization controller design for interconnected time delay systems, Automatica, 44, 10, 2600-2606 (2008) · Zbl 1155.93313
[13] Hua, C.; Zhang, L.; Guan, X., Decentralized output feedback controller design for nonlinear interconnected systems with unknown control direction and time-varying delays, Int. J. Adapt. Control Signal Process., 28, 11, 1160-1173 (2014) · Zbl 1338.93022
[14] He, C.; Li, J.; Zhang, L., Decentralized adaptive control of nonlinear large-scale pure-feedback interconnected systems with time-varying delays, Int. J. Adapt. Control Signal Process., 29, 1, 24-40 (2015) · Zbl 1336.93016
[15] Hua, C.; Zhang, L.; Guan, X., Output feedback control for interconnected time-delay systems with prescribed performace, Neurocomputing., 129, 208-215 (2014)
[16] Hua, C.; Zhang, L.; Guan, X., Decentralized output feedback adaptive NN tracking control for time-delay stochastic nonlinear systems with prescribed performance, IEEE Trans. Neur. Netw. Learn. Syst., 26, 11, 2749-2759 (2015)
[17] Hua, C.; Guan, X.; Shi, P., Robust backstepping control for a class of time delayed systems, IEEE Trans. Autom. Control, 50, 6, 894-899 (2005) · Zbl 1365.93054
[18] Hua, C.; Guan, X., Smooth dynamic output feedback control for multiple time-delay systems with nonlinear uncertainties, Automatica, 68, 1-8 (2016) · Zbl 1334.93073
[19] Hua, C.; Zhang, L.; Guan, X., Distributed adaptive neural network output tracking of leader-following high-order stochastic nonlinear multiagent systems with unknown dead-zone input, IEEE Trans. Cybern., 47, 1, 177-185 (2017)
[20] Ioannou, P. A.; Kokotovic, P. V., Adaptive Systems with Reduced Models (1983), Springer-Verlag: Springer-Verlag New York · Zbl 0503.93001
[21] Krstic, M.; Kanellakopoulos, I.; Kokotovic, P., Nonlinear and Adaptive Control Design (1995), Wiley: Wiley Hoboken, NJ · Zbl 0763.93043
[22] Kurdila, A. J.; Narcowich, F. J.; Ward, J. D., Persistency of excitation in identification using radial basis function approximants, SIAM J. Control Optim., 33, 5, 625-642 (1995) · Zbl 0831.93015
[23] Li, T.; Li, R.; Li, J., Decentralized adaptive neural control of nonlinear interconnected large-scale with unknown time delays and input saturation, Neurocomput, 74, 14-15, 2277-2283 (2011)
[24] Li, T.; Li, R.; Li, J., Decentralized adaptive neural control of nonlinear systems with unknown time delays, Nonlinear Dyn., 67, 3, 2017-2026 (2012) · Zbl 1243.93010
[25] Li, Y.; Tong, S.; Li, T., Adaptive fuzzy output feedback dynamic surface control of interconnected nonlinear pure-feedback systems, IEEE Trans. Cybern., 45, 1, 138-149 (2015)
[26] Li, Y.; Tong, S., Prescribed performance adaptive fuzzy output-feedback dynamic surface control for nonlinear large-scale systems with time delays, Inf. Sci, 292, 20, 125-142 (2015) · Zbl 1355.93100
[27] Y. Li, S. Tong, Adaptive fuzzy control with prescribed performance for block-triangular-structured nonlinear systems, IEEE Trans. Fuzzy Syst. doi:10.1109/TFUZZ.2017.2710950; Y. Li, S. Tong, Adaptive fuzzy control with prescribed performance for block-triangular-structured nonlinear systems, IEEE Trans. Fuzzy Syst. doi:10.1109/TFUZZ.2017.2710950
[28] Lin, W.; Qian, C. J., Adaptive control of nonlinearly parameterized systems: the smooth feedback case, IEEE Trans. Automat. Control, 47, 8, 1249-2366 (2002) · Zbl 1364.93399
[29] Liu, Y. J.; Tong, S., Adaptive fuzzy control for a class of nonlinear discrete-time systems with backlash, IEEE Trans. Fuzzy Syst., 22, 5, 1359-1365 (2014)
[30] Liu, Y. J.; Tong, S.; Li, D. J.; Gao, Y., Fuzzy adaptive control with state observer for a class of nonlinear discrete-time systems with input constraint, IEEE Trans. Fuzzy Syst., 24, 5, 1147-1158 (2016)
[31] Liu, Y. J.; Gao, Y.; Tong, S.; Li, Y., Fuzzy approximation-based adaptive backstepping optimal control for a class of nonlinear discrete-time systems with dead-zone, IEEE Trans. Fuzzy Syst., 24, 1, 16-28 (2016)
[32] Liu, Y. J.; Li, J.; Tong, S.; Chen, C. L.P., Neural network control-based adaptive learning design for nonlinear systems with full-state constraints, IEEE Trans. Neur. Netw. Learn. Syst., 27, 7, 1562-1571 (2016)
[33] Liu, Y. J.; Tong, S., Optimal control-based adaptive NN design for a class of nonlinear discrete-dime block-triangular systems, IEEE Trans. Cybern., 46, 11, 2670-2680 (2016)
[34] Liu, Y. J.; Li, S.; Tong, S.; Chen, C. L.P., Neural approximation-based adaptive control for a class of nonlinear nonstrict feedback discrete-time systems, IEEE Trans. Neur. Netw. Learn. Syst., 28, 7, 1531-1541 (2017)
[35] Y.J. Liu, S. Tong, C.L.P. Chen, D.J. Li, Adaptive NN control using integral barrier lyapunov functionals for uncertain nonlinear block-triangular constraint systems, IEEE Trans. Cybern. doi:10.1109/TCYB.2016.2581173; Y.J. Liu, S. Tong, C.L.P. Chen, D.J. Li, Adaptive NN control using integral barrier lyapunov functionals for uncertain nonlinear block-triangular constraint systems, IEEE Trans. Cybern. doi:10.1109/TCYB.2016.2581173
[36] Mahmoud, M. S.; Bingulac, S., Robust design of stabilizing controllers for interconnected time-delay systems, Automatica, 34, 1, 795-800 (1998) · Zbl 0936.93044
[37] Meng, W.; Yang, Q.; Jagannathan, S.; Sun, Y., Adaptive neural control of high-order uncertain nonaffine systems: a transformation to affine systems approach, Automatica, 50, 5, 1473-1480 (2014) · Zbl 1296.93086
[38] Niculescu, S. L., Delay Effects on Stability: A Robust Control Approach (2001), Springer-Verlag: Springer-Verlag New York · Zbl 0997.93001
[39] Park, J.; Sandberg, I. W., Universal approximation using radial-basis-function networks, Neur. Comput., 3, 2, 246-257 (1991)
[40] Swaroop, D.; Hedrick, J. K.; Yip, P. P.; Gerdes, J. C., Dynamic surface control for a class of nonlinear systems, IEEE Trans. Autom. Control, 45, 10, 1893-1899 (2000) · Zbl 0991.93041
[41] Sun, G.; Wang, D.; Li, T.; Peng, Z.; Wang, H., Single neural network approximation based adaptive control for a class of uncertain strict-feedback nonlinear systems, Nonlinear Dyn., 72, 1-2, 175-184 (2013) · Zbl 1268.92014
[42] Tong, S.; Li, Y., Adaptive fuzzy decentralized output feedback control for nonlinear large-scale systems with unknown dead-zone inputs, IEEE Trans. Fuzzy Syst., 21, 5, 913-925 (2013)
[43] Tong, S.; Huo, B.; Li, Y., Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures, IEEE Trans. Fuzzy Syst., 22, 1, 1-15 (2014)
[44] Tong, S.; Li, Y.; Liu, Y., Adaptive fuzzy output feedback decentralized control of pure-feedback nonlinear large-scale systems, Int. J. Robust Nonlin. Control, 24, 5, 930-954 (2014) · Zbl 1283.93027
[45] Tong, S.; Li, Y. M.; Zhang, H. G., Adaptive neural network decentralized backstepping output-feedback control for nonlinear large-scale systems with time delays, IEEE Trans. Neural Netw., 22, 7, 1073-1086 (2011)
[46] Tong, S.; Liu, C.; Li, Y.; Zhang, H., Adaptive fuzzy decentralized control for large-scale nonlinear systems with time-varying delays and unknown high-frequency gain sign, IEEE Trans. Syst. Man Cybern. B Cybern., 41, 2, 474-485 (2011)
[47] Wu, H. S., Decentralized adaptive robust state feedback for uncertain large-scale interconnected systems with time delays, J. Opt. Theory Appl., 126, 2, 439-462 (2005) · Zbl 1102.93019
[48] Wang, H.; Yang, X.; Yu, Z.; Liu, K.; Liu, X., Fuzzy-approximation-based decentralized adaptive control for pure-feedback large-scale nonlinear systems with time-delay, Neural Comput. Appl., 26, 1, 151-160 (2015)
[49] Wang, C.; Hill, D. J.; Ge, S. S.; Chen, G. R., An ISS-modular approach for adaptive neural control of pure-feedback systems, Automatica, 42, 5, 625-635 (2006)
[50] Wang, L.; Li, H.; Zhou, Q.; Lu, R., Adaptive fuzzy control for nonstrict feedback systems with unmodeled dynamics and fuzzy dead zone via output feedback, IEEE Trans. Cybern., 47, 9, 2400-2412 (2017)
[51] Wen, G. X.; Chen, C. L.P.; Liu, Y. J.; Liu, Z., Neural-network-based adaptive leader-following consensus control for second-order non-linear multi-agent systems, IET Control Theory Appl., 9, 13, 1927-1934 (2015)
[52] Xia, X.; Zhang, T.; Wang, Q., Decentralized adaptive output feedback dynamic surface control of interconnected nonlinear systems with unmodeled dynamics, J. Frankl. Inst., 352, 3, 1031-1055 (2015) · Zbl 1307.93211
[53] Xiao, X. S.; Wu, L., Decentralized adaptive tracking of interconnected non-affine systems with time delays and quantized inputs, Neurocompt, 141, 194-201 (2014)
[54] Yoo, S. J.; Park, J. B.; Choi, Y. H., Decentralized adaptive stabilization of interconnected nonlinear systems with unknown non-symmetric dead-zone inputs, Automatica, 45, 2, 436-443 (2009) · Zbl 1158.93399
[55] Yoo, S. J., Decentralised fault compensation of time-delayed interactions and dead-zone actuators for a class of large-scale non-linear systems, IET Control Theory Appl., 9, 9, 1461-1471 (2015)
[56] Yoo, S. J.; Park, J. B., Decentralized adaptive output-feedback control for a class of nonlinear large-scale systems with unknown time-varying delayed interactions, Inf. Sci., 186, 1, 222-238 (2012) · Zbl 1401.93018
[57] Yoo, S. J., Observer-based decentralized adaptive control for large-scale pure-feedback systems with unknown time-delayed nonlinear interactions, Int. J. Robust Nonlin. Control, 25, 8, 1107-1125 (2015) · Zbl 1317.93159
[58] Yoo, S. J.; Park, J. B., Neural-network-based decentralized adaptive control for a class of large-scale nonlinear systems with unknown time-varying delays, IEEE Trans. Syst. Man Cybern. B Cybern., 39, 5, 1316-1323 (2009)
[59] Zhou, J., Decentralized adaptive control for large-scale time-delay systems with dead-zone input, Automatica, 44, 7, 1790-1799 (2008) · Zbl 1149.93300
[60] Q. Zhou, H. Li, L. Wang, R. Lu, Prescribed performance observer-based adaptive fuzzy control for nonstrict-feedback stochastic nonlinear systems, IEEE Trans. Syst. Man Cybern. Syst. doi:10.1109/TSMC.2017.2738155; Q. Zhou, H. Li, L. Wang, R. Lu, Prescribed performance observer-based adaptive fuzzy control for nonstrict-feedback stochastic nonlinear systems, IEEE Trans. Syst. Man Cybern. Syst. doi:10.1109/TSMC.2017.2738155
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.