×

High order structure-preserving finite difference WENO schemes for MHD equations with gravitation in all sonic Mach numbers. (English) Zbl 1535.65129

Summary: In this paper, we develop a high-order semi-implicit (SI) structure-preserving finite difference weighted essentially nonoscillatory (WENO) scheme for magnetohydrodynamic (MHD) equations with a gravitational source. The proposed scheme is well-balanced for magnetic steady states, divergence-free for the magnetic field, conservative in the high Mach regime, and exhibits asymptotic preserving (AP) and asymptotically accurate (AA) properties in the incompressible low sonic Mach regime. The constrained transport method is applied to maintain a discrete divergence-free magnetic field. The sonic Mach number \(\varepsilon\) ranging from 0 to \(\mathcal{O}(1)\) is taken into account for all Mach flows. One of the crucial and novel ingredients is the addition of an evolution equation for the perturbation of potential temperature as an auxiliary equation to the conservative MHD system. This addition ensures a correct asymptotic low sonic Mach limit and helps to effectively capture shocks in the compressible high Mach regime. A well-balanced finite difference WENO scheme is designed for conservative variables of the resulting system. With stiffly accurate SI implicit-explicit Runge-Kutta time discretizations, the AP and AA properties are formally proven. Numerical experiments are provided to validate the effectiveness and structure-preserving properties of the proposed scheme.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L04 Numerical methods for stiff equations
65N06 Finite difference methods for boundary value problems involving PDEs
76W05 Magnetohydrodynamics and electrohydrodynamics
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
76L05 Shock waves and blast waves in fluid mechanics
76H05 Transonic flows
80A19 Diffusive and convective heat and mass transfer, heat flow
76M20 Finite difference methods applied to problems in fluid mechanics
35B40 Asymptotic behavior of solutions to PDEs
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
35Q35 PDEs in connection with fluid mechanics

Software:

Athena; SLAU2-HLLD
Full Text: DOI

References:

[1] Arun, K.; Samantaray, S., Asymptotic preserving low Mach number accurate IMEX finite volume schemes for the isentropic Euler equations, J. Sci. Comput., 82, 2, 1-32, 2020 · Zbl 1434.76077 · doi:10.1007/s10915-020-01138-8
[2] Aschwanden, M., Physics of the Solar Corona: An Introduction with Problems and Solutions, 2006, Berlin: Springer, Berlin
[3] Balsara, DS, Total variation diminishing scheme for adiabatic and isothermal magnetohydrodynamics, Astrophys. J. Suppl. Ser., 116, 1, 133, 1998 · doi:10.1086/313093
[4] Balsara, DS, Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction, Astrophys. J. Suppl. Ser., 151, 1, 149, 2004 · doi:10.1086/381377
[5] Balsara, DS; Spicer, DS, A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations, J. Comput. Phys., 149, 2, 270-292, 1999 · Zbl 0936.76051 · doi:10.1006/jcph.1998.6153
[6] Bannon, PR, On the anelastic approximation for a compressible atmosphere, J. Atmos. Sci., 53, 23, 3618-3628, 1996 · doi:10.1175/1520-0469(1996)053<3618:OTAAFA>2.0.CO;2
[7] Birke, C., Boscheri, W., Klingenberg, C.: A High Order Semi-Implicit Scheme for Ideal Magnetohydrodynamics. Springer Proceedings in Mathematics & Statistics, Finite Volume and Complex Applications X (2023) · Zbl 1529.65028
[8] Bispen, G.; Arun, KR; Lukáčová-Medvidová, M.; Noelle, S., IMEX large time step finite volume methods for low Froude number shallow water flows, Commun. Comput. Phys., 16, 2, 307-347, 2014 · Zbl 1373.76117 · doi:10.4208/cicp.040413.160114a
[9] Bispen, G.; Lukáčová-Medvid’ová, M.; Yelash, L., Asymptotic preserving IMEX finite volume schemes for low Mach number Euler equations with gravitation, J. Comput. Phys., 335, 222-248, 2017 · Zbl 1375.76023 · doi:10.1016/j.jcp.2017.01.020
[10] Bogdan, T.; Hansteen, MCV; McMurry, A.; Rosenthal, C.; Johnson, M.; Petty-Powell, S.; Zita, E.; Stein, R.; McIntosh, S.; Nordlund, Å., Waves in the magnetized solar atmosphere. II. Waves from localized sources in magnetic flux concentrations, Astrophys. J., 599, 1, 626, 2003 · doi:10.1086/378512
[11] Boscarino, S., Error analysis of IMEX Runge-Kutta methods derived from differential-algebraic systems, SIAM J. Numer. Anal., 45, 4, 1600-1621, 2007 · Zbl 1152.65088 · doi:10.1137/060656929
[12] Boscarino, S.; Pareschi, L.; Russo, G., Implicit-explicit Runge-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit, SIAM J. Sci. Comput., 35, 1, A22-A51, 2013 · Zbl 1264.65150 · doi:10.1137/110842855
[13] Boscarino, S.; Filbet, F.; Russo, G., High order semi-implicit schemes for time dependent partial differential equations, J. Sci. Comput., 68, 3, 975-1001, 2016 · Zbl 1353.65075 · doi:10.1007/s10915-016-0168-y
[14] Boscarino, S.; Russo, G.; Scandurra, L., All Mach number second order semi-implicit scheme for the Euler equations of gas dynamics, J. Sci. Comput., 77, 2, 850-884, 2018 · Zbl 1407.65139 · doi:10.1007/s10915-018-0731-9
[15] Boscarino, S.; Qiu, J-M; Russo, G.; Xiong, T., A high order semi-implicit IMEX WENO scheme for the all-Mach isentropic Euler system, J. Comput. Phys., 392, 594-618, 2019 · Zbl 1452.76148 · doi:10.1016/j.jcp.2019.04.057
[16] Boscarino, S.; Qiu, J.; Russo, G.; Xiong, T., High order semi-implicit WENO schemes for all-Mach full Euler system of gas dynamics, SIAM J. Sci. Comput., 44, 2, B368-B394, 2022 · Zbl 07511035 · doi:10.1137/21M1424433
[17] Boscheri, W.; Pareschi, L., High order pressure-based semi-implicit IMEX schemes for the 3D Navier-Stokes equations at all Mach numbers, J. Comput. Phys., 434, 2021 · Zbl 07508522 · doi:10.1016/j.jcp.2021.110206
[18] Boscheri, W.; Dimarco, G.; Loubère, R.; Tavelli, M.; Vignal, M-H, A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations, J. Comput. Phys., 415, 2020 · Zbl 1440.76094 · doi:10.1016/j.jcp.2020.109486
[19] Brackbill, J.U., Barnes, D.C.: The effect of nonzero \(\nabla \cdot B\) on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys. 35(3), 426-430 (1980) · Zbl 0429.76079
[20] Chandrashekar, P.; Klingenberg, C., A second order well-balanced finite volume scheme for Euler equations with gravity, SIAM J. Sci. Comput., 37, 3, B382-B402, 2015 · Zbl 1320.76078 · doi:10.1137/140984373
[21] Chen, W.; Wu, K.; Xiong, T., High order asymptotic preserving finite difference WENO schemes with constrained transport for MHD equations in all sonic Mach numbers, J. Comput. Phys., 488, 2023 · Zbl 07696996 · doi:10.1016/j.jcp.2023.112240
[22] Cheng, B.; Ju, Q.; Schochet, S., Three-scale singular limits of evolutionary PDEs, Arch. Ration. Mech. Anal., 229, 601-625, 2018 · Zbl 1394.35351 · doi:10.1007/s00205-018-1233-5
[23] Cheng, B.; Ju, Q.; Schochet, S., Convergence rate estimates for the low Mach and Alfvén number three-scale singular limit of compressible ideal magnetohydrodynamics, ESAIM Math. Model. Numer. Anal., 55, S733-S759, 2021 · Zbl 1473.35022 · doi:10.1051/m2an/2020051
[24] Christlieb, AJ; Rossmanith, JA; Tang, Q., Finite difference weighted essentially non-oscillatory schemes with constrained transport for ideal magnetohydrodynamics, J. Comput. Phys., 268, 302-325, 2014 · Zbl 1349.76442 · doi:10.1016/j.jcp.2014.03.001
[25] Christlieb, AJ; Liu, Y.; Tang, Q.; Xu, Z., Positivity-preserving finite difference weighted ENO schemes with constrained transport for ideal magnetohydrodynamic equations, SIAM J. Sci. Comput., 37, 4, A1825-A1845, 2015 · Zbl 1329.76225 · doi:10.1137/140971208
[26] Christlieb, AJ; Feng, X.; Seal, DC; Tang, Q., A high-order positivity-preserving single-stage single-step method for the ideal magnetohydrodynamic equations, J. Comput. Phys., 316, 218-242, 2016 · Zbl 1349.76441 · doi:10.1016/j.jcp.2016.04.016
[27] Christlieb, AJ; Feng, X.; Jiang, Y.; Tang, Q., A high-order finite difference WENO scheme for ideal magnetohydrodynamics on curvilinear meshes, SIAM J. Sci. Comput., 40, 4, A2631-A2666, 2018 · Zbl 1394.76077 · doi:10.1137/17M115757X
[28] Cordier, F.; Degond, P.; Kumbaro, A., An asymptotic-preserving all-speed scheme for the Euler and Navier-Stokes equations, J. Comput. Phys., 231, 17, 5685-5704, 2012 · Zbl 1277.76090 · doi:10.1016/j.jcp.2012.04.025
[29] Cui, W.; Ou, Y.; Ren, D., Incompressible limit of full compressible magnetohydrodynamic equations with well-prepared data in 3-D bounded domains, J. Math. Anal. Appl., 427, 1, 263-288, 2015 · Zbl 1333.35186 · doi:10.1016/j.jmaa.2015.02.049
[30] Dai, W.; Woodward, PR, On the divergence-free condition and conservation laws in numerical simulations for supersonic magnetohydrodynamical flows, Astrophys. J., 494, 1, 317, 1998 · doi:10.1086/305176
[31] Dedner, A.; Kemm, F.; Kröner, D.; Munz, C-D; Schnitzer, T.; Wesenberg, M., Hyperbolic divergence cleaning for the MHD equations, J. Comput. Phys., 175, 2, 645-673, 2002 · Zbl 1059.76040 · doi:10.1006/jcph.2001.6961
[32] Degond, P.; Jin, S.; Liu, J., Mach-number uniform asymptotic-preserving gauge schemes for compressible flows, Bull. Inst. Math. Academia Sinica, 2, 4, 851, 2007 · Zbl 1210.76135
[33] Dimarco, G.; Loubère, R.; Vignal, M-H, Study of a new asymptotic preserving scheme for the Euler system in the low Mach number limit, SIAM J. Sci. Comput., 39, 5, A2099-A2128, 2017 · Zbl 1391.76401 · doi:10.1137/16M1069274
[34] Dimarco, G.; Loubère, R.; Michel-Dansac, V.; Vignal, M-H, Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime, J. Comput. Phys., 372, 178-201, 2018 · Zbl 1415.76467 · doi:10.1016/j.jcp.2018.06.022
[35] Dumbser, M.; Balsara, DS; Tavelli, M.; Fambri, F., A divergence-free semi-implicit finite volume scheme for ideal, viscous, and resistive magnetohydrodynamics, Int. J. Numer. Meth. Fluids, 89, 1-2, 16-42, 2019 · doi:10.1002/fld.4681
[36] Duran, A.; Marche, F.; Turpault, R.; Berthon, C., Asymptotic preserving scheme for the shallow water equations with source terms on unstructured meshes, J. Comput. Phys., 287, 184-206, 2015 · Zbl 1351.76104 · doi:10.1016/j.jcp.2015.02.007
[37] Edelmann, PV; Horst, L.; Berberich, JP; Andrassy, R.; Higl, J.; Leidi, G.; Klingenberg, C.; Röpke, F., Well-balanced treatment of gravity in astrophysical fluid dynamics simulations at low Mach numbers, Astron. Astrophys., 652, A53, 2021 · doi:10.1051/0004-6361/202140653
[38] Evans, CR; Hawley, JF, Simulation of magnetohydrodynamic flows: a constrained transport method, Astrophys. J., 332, 659-677, 1988 · doi:10.1086/166684
[39] Fambri, F., A novel structure preserving semi-implicit finite volume method for viscous and resistive magnetohydrodynamics, Int. J. Numer. Meth. Fluids, 93, 12, 3447-3489, 2021 · doi:10.1002/fld.5041
[40] Fuchs, F.; McMurry, A.; Mishra, S.; Risebro, N.; Waagan, K., Finite volume methods for wave propagation in stratified magneto-atmospheres, Commun. Comput. Phys., 7, 3, 473-509, 2010 · Zbl 1364.76114 · doi:10.4208/cicp.2009.08.154
[41] Fuchs, F.; McMurry, A.; Mishra, S.; Risebro, N.; Waagan, K., High order well-balanced finite volume schemes for simulating wave propagation in stratified magnetic atmospheres, J. Comput. Phys., 229, 11, 4033-4058, 2010 · Zbl 1190.76153 · doi:10.1016/j.jcp.2010.01.038
[42] Fuchs, F.; McMurry, A.; Mishra, S.; Waagan, K., Simulating waves in the upper solar atmosphere with SURYA: a well-balanced high-order finite-volume code, Astrophys. J., 732, 2, 75, 2011 · doi:10.1088/0004-637X/732/2/75
[43] Ghosh, D.; Constantinescu, EM, Well-balanced, conservative finite difference algorithm for atmospheric flows, AIAA J., 54, 4, 1370-1385, 2016 · doi:10.2514/1.J054580
[44] Haack, J.; Jin, S.; Liu, J-G, An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations, Commun. Comput. Phys., 12, 4, 955-980, 2012 · Zbl 1373.76284 · doi:10.4208/cicp.250910.131011a
[45] Han, J.; Tang, H., An adaptive moving mesh method for two-dimensional ideal magnetohydrodynamics, J. Comput. Phys., 220, 2, 791-812, 2007 · Zbl 1235.76084 · doi:10.1016/j.jcp.2006.05.031
[46] Helzel, C.; Rossmanith, JA; Taetz, B., An unstaggered constrained transport method for the 3D ideal magnetohydrodynamic equations, J. Comput. Phys., 230, 10, 3803-3829, 2011 · Zbl 1369.76061 · doi:10.1016/j.jcp.2011.02.009
[47] Huang, G.; Xing, Y.; Xiong, T., High order well-balanced asymptotic preserving finite difference WENO schemes for the shallow water equations in all Froude numbers, J. Comput. Phys., 463, 2022 · Zbl 07536759 · doi:10.1016/j.jcp.2022.111255
[48] Huang, G., Xing, Y., Xiong, T.: High order asymptotic preserving well-balanced finite difference WENO schemes for all Mach full Euler equations with gravity. Commun. Comput. Phys. (In Press). arXiv:2210.01641 (2023)
[49] Jardin, S., Review of implicit methods for the magnetohydrodynamic description of magnetically confined plasmas, J. Comput. Phys., 231, 3, 822-838, 2012 · Zbl 1452.76002 · doi:10.1016/j.jcp.2010.12.025
[50] Jiang, G-S; Peng, D., Weighted ENO schemes for Hamilton-Jacobi equations, SIAM J. Sci. Comput., 21, 6, 2126-2143, 2000 · Zbl 0957.35014 · doi:10.1137/S106482759732455X
[51] Jiang, G-S; Wu, C-C, A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics, J. Comput. Phys., 150, 2, 561-594, 1999 · Zbl 0937.76051 · doi:10.1006/jcph.1999.6207
[52] Jiang, S.; Ju, Q.; Li, F., Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions, Commun. Math. Phys., 297, 2, 371-400, 2010 · Zbl 1195.35253 · doi:10.1007/s00220-010-0992-0
[53] Jiang, S.; Ju, Q.; Li, F., Low Mach number limit for the multi-dimensional full magnetohydrodynamic equations, Nonlinearity, 25, 5, 1351, 2012 · Zbl 1376.76077 · doi:10.1088/0951-7715/25/5/1351
[54] Jiang, S.; Ju, Q.; Xu, X., Small Alfvén number limit for incompressible magneto-hydrodynamics in a domain with boundaries, Sci. China Math., 62, 2229-2248, 2019 · Zbl 1425.76301 · doi:10.1007/s11425-019-1593-0
[55] Jin, S., Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput., 21, 441-454, 1999 · Zbl 0947.82008 · doi:10.1137/S1064827598334599
[56] Jin, S.: Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review. Lecture notes for summer school on methods and models of kinetic theory (M &MKT), Porto Ercole (Grosseto, Italy), pp. 177-216 (2010) · Zbl 1259.82079
[57] Jin, S., Asymptotic-preserving schemes for multiscale physical problems, Acta Numer., 31, 415-489, 2022 · Zbl 1519.65046 · doi:10.1017/S0962492922000010
[58] Ju, Q.; Schochet, S.; Xu, X., Singular limits of the equations of compressible ideal magneto-hydrodynamics in a domain with boundaries, Asymptot. Anal., 113, 3, 137-165, 2019 · Zbl 1425.35153
[59] Kanbar, F.; Touma, R.; Klingenberg, C., Well-balanced central scheme for the system of MHD equations with gravitational source term, Commun. Comput. Phys., 32, 3, 878-898, 2022 · Zbl 1496.65138 · doi:10.4208/cicp.OA-2022-0067
[60] Käppeli, R.; Mishra, S., Well-balanced schemes for the Euler equations with gravitation, J. Comput. Phys., 259, 199-219, 2014 · Zbl 1349.76345 · doi:10.1016/j.jcp.2013.11.028
[61] Klein, R., Asymptotics, structure, and integration of sound-proof atmospheric flow equations, Theoret. Comput. Fluid Dyn., 23, 3, 161-195, 2009 · Zbl 1234.76044 · doi:10.1007/s00162-009-0104-y
[62] Krause, G., Hydrostatic equilibrium preservation in MHD numerical simulation with stratified atmospheres-explicit Godunov-type schemes with MUSCL reconstruction, Astron. Astrophys., 631, A68, 2019 · doi:10.1051/0004-6361/201936387
[63] Leidi, G.; Birke, C.; Andrassy, R.; Higl, J.; Edelmann, P.; Wiest, G.; Klingenberg, C.; Röpke, F., A finite-volume scheme for modeling compressible magnetohydrodynamic flows at low Mach numbers in stellar interiors, Astron. Astrophys., 668, A143, 2022 · doi:10.1051/0004-6361/202244665
[64] Li, F.; Shu, C-W, Locally divergence-free discontinuous Galerkin methods for MHD equations, J. Sci. Comput., 22, 1, 413-442, 2005 · Zbl 1123.76341 · doi:10.1007/s10915-004-4146-4
[65] Li, G.; Xing, Y., Well-balanced finite difference weighted essentially non-oscillatory schemes for the Euler equations with static gravitational fields, Comput. Math. Appl., 75, 6, 2071-2085, 2018 · Zbl 1409.76090 · doi:10.1016/j.camwa.2017.10.015
[66] Li, F.; Xu, L., Arbitrary order exactly divergence-free central discontinuous Galerkin methods for ideal MHD equations, J. Comput. Phys., 231, 6, 2655-2675, 2012 · Zbl 1427.76135 · doi:10.1016/j.jcp.2011.12.016
[67] Liu, X., A well-balanced asymptotic preserving scheme for the two-dimensional shallow water equations over irregular bottom topography, SIAM J. Sci. Comput., 42, 5, B1136-B1172, 2020 · Zbl 1451.76077 · doi:10.1137/19M1262590
[68] Liu, X.; Chertock, A.; Kurganov, A., An asymptotic preserving scheme for the two-dimensional shallow water equations with Coriolis forces, J. Comput. Phys., 391, 259-279, 2019 · Zbl 1452.65192 · doi:10.1016/j.jcp.2019.04.035
[69] Liu, M.; Feng, X.; Wang, X., Implementation of the HLL-GRP solver for multidimensional ideal MHD simulations based on finite volume method, J. Comput. Phys., 473, 2023 · Zbl 07625380 · doi:10.1016/j.jcp.2022.111687
[70] Luo, J.; Xu, K.; Liu, N., A well-balanced symplecticity-preserving gas-kinetic scheme for hydrodynamic equations under gravitational field, SIAM J. Sci. Comput., 33, 5, 2356-2381, 2011 · Zbl 1232.76044 · doi:10.1137/100803699
[71] Mamashita, T.; Kitamura, K.; Minoshima, T., SLAU2-HLLD numerical flux with wiggle-sensor for stable low Mach magnetohydrodynamics simulations, Comput. Fluids, 231, 2021 · Zbl 1521.76908 · doi:10.1016/j.compfluid.2021.105165
[72] Matthaeus, WH; Brown, MR, Nearly incompressible magnetohydrodynamics at low Mach number, Phys. Fluids, 31, 12, 3634-3644, 1988 · Zbl 0661.76125 · doi:10.1063/1.866880
[73] Minoshima, T.; Miyoshi, T., A low-dissipation HLLD approximate Riemann solver for a very wide range of Mach numbers, J. Comput. Phys., 446, 2021 · Zbl 07516457 · doi:10.1016/j.jcp.2021.110639
[74] Noelle, S., Bispen, G., Arun, K.R., Lukáčová-Me \(\acute{\text{d}}\) vidová, M., Munz, C.-D.: A weakly asymptotic preserving low Mach number scheme for the Euler equations of gas dynamics. SIAM J. Sci. Comput. 36(6), B989-B1024 (2014) · Zbl 1321.76053
[75] Notay, Y., An aggregation-based algebraic multigrid method, Electron. Trans. Numer. Anal., 37, 123-146, 2010 · Zbl 1206.65133
[76] Ogura, Y.; Phillips, NA, Scale analysis of deep and shallow convection in the atmosphere, J. Atmos. Sci., 19, 2, 173-179, 1962 · doi:10.1175/1520-0469(1962)019<0173:SAODAS>2.0.CO;2
[77] Pareschi, L.; Russo, G., Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation, J. Sci. Comput., 25, 112, 129-155, 2005 · Zbl 1203.65111
[78] Powell, KG, An approximate Riemann solver for magnetohydrodynamics, Upwind and High-Resolution Schemes, 570-583, 1997, Berlin: Springer, Berlin · doi:10.1007/978-3-642-60543-7_23
[79] Powell, K.G., Roe, P.L., Myong, R., Gombosi, T.: An upwind scheme for magnetohydrodynamics. In: 12th Computational Fluid Dynamics Conference, p. 1704 (1995) · Zbl 0900.76344
[80] Rosenthal, C.; Bogdan, T.; Carlsson, M.; Dorch, S.; Hansteen, V.; McIntosh, S.; McMurry, A.; Nordlund, Å.; Stein, R., Waves in the magnetized solar atmosphere. I. Basic processes and internetwork oscillations, Astrophys. J., 564, 1, 508, 2002 · doi:10.1086/324214
[81] Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, pp. 325-432 (1998) · Zbl 0927.65111
[82] Shun’ichi, G., Singular limit of the incompressible ideal magneto-fluid motion with respect to the Alfvén number, Hokkaido Math. J., 19, 175-187, 1990 · Zbl 0702.76124
[83] Stone, JM; Gardiner, TA; Teuben, P.; Hawley, JF; Simon, JB, Athena: a new code for astrophysical MHD, Astrophys. J. Suppl. Ser., 178, 1, 137, 2008 · doi:10.1086/588755
[84] Tang, M., Second order method for isentropic Euler equation in the low Mach number regime, Kinet. Relat. Models, 5, 1, 155-184, 2012 · Zbl 1366.76065 · doi:10.3934/krm.2012.5.155
[85] Tang, H.; Xu, K., A high-order gas-kinetic method for multidimensional ideal magnetohydrodynamics, J. Comput. Phys., 165, 1, 69-88, 2000 · Zbl 0995.76066 · doi:10.1006/jcph.2000.6597
[86] Tang, Q.; Chacon, L.; Kolev, TV; Shadid, JN; Tang, X-Z, An adaptive scalable fully implicit algorithm based on stabilized finite element for reduced visco-resistive MHD, J. Comput. Phys., 454, 2022 · Zbl 07518056 · doi:10.1016/j.jcp.2022.110967
[87] Tavelli, M.; Dumbser, M., A pressure-based semi-implicit space-time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier-Stokes equations at all Mach numbers, J. Comput. Phys., 341, 341-376, 2017 · Zbl 1376.76028 · doi:10.1016/j.jcp.2017.03.030
[88] Thomann, A.; Puppo, G.; Klingenberg, C., An all speed second order well-balanced IMEX relaxation scheme for the Euler equations with gravity, J. Comput. Phys., 420, 2020 · Zbl 07506636 · doi:10.1016/j.jcp.2020.109723
[89] Vater, S.; Klein, R., A semi-implicit multiscale scheme for shallow water flows at low Froude number, Commun. Appl. Math. Comput. Sci., 13, 2, 303-336, 2018 · Zbl 1402.65094 · doi:10.2140/camcos.2018.13.303
[90] Wu, K.; Shu, C-W, A provably positive discontinuous Galerkin method for multidimensional ideal magnetohydrodynamics, SIAM J. Sci. Comput., 40, 5, B1302-B1329, 2018 · Zbl 1404.65184 · doi:10.1137/18M1168042
[91] Wu, K.; Shu, C-W, Provably positive high-order schemes for ideal magnetohydrodynamics: analysis on general meshes, Numer. Math., 142, 4, 995-1047, 2019 · Zbl 1419.76446 · doi:10.1007/s00211-019-01042-w
[92] Wu, K.; Xing, Y., Uniformly high-order structure-preserving discontinuous Galerkin methods for Euler equations with gravitation: positivity and well-balancedness, SIAM J. Sci. Comput., 43, 1, A472-A510, 2021 · Zbl 1466.65150 · doi:10.1137/20M133782X
[93] Wu, K.; Jiang, H.; Shu, C-W, Provably positive central discontinuous Galerkin schemes via geometric quasilinearization for ideal MHD equations, SIAM J. Numer. Anal., 61, 1, 250-285, 2023 · Zbl 1516.65102 · doi:10.1137/22M1486996
[94] Xing, Y.; Shu, C-W, High order well-balanced WENO scheme for the gas dynamics equations under gravitational fields, SIAM J. Sci. Comput., 54, 2, 645-662, 2013 · Zbl 1260.76022 · doi:10.1007/s10915-012-9585-8
[95] Xu, Z.; Balsara, DS; Du, H., Divergence-free WENO reconstruction-based finite volume scheme for solving ideal MHD equations on triangular meshes, Commun. Comput. Phys., 19, 4, 841-880, 2016 · Zbl 1373.76149 · doi:10.4208/cicp.050814.040915a
[96] Zank, GP; Matthaeus, W., Nearly incompressible fluids. II: Magnetohydrodynamics, turbulence, and waves, Phys. Fluids A Fluid Dyn., 5, 1, 257-273, 1993 · Zbl 0785.76100 · doi:10.1063/1.858780
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.