×

How does variability in cell aging and growth rates influence the malthus parameter? (English) Zbl 1352.35206

Summary: Recent biological studies draw attention to the question of variability between cells. We refer to the study of Kiviet et al. published in 2014 [D. J. Kiviet, P. Nghe, N. Walker, S. Boulineau, V. Sunderlikova and S. J. Tans, “Stochasticity of metabolism and growth at the single-cell level”, Nature 514, 376–379 (2014)]. A cell in a controlled culture grows at a constant rate \(v>0\), but this rate can differ from one individual to another. The biological question we address here states as follows. How does individual variability in the growth rate influence the growth speed of the population? The growth speed of the population is measured by the Malthus parameter we define thereafter, also called in the literature fitness. Even if the variability in the growth rate among cells is small, with a distribution of coefficient of variation around 10%, and even if its influence on the Malthus parameter would be still smaller, such an influence may become determinant since it characterises the exponential growth speed of the population.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
47A75 Eigenvalue problems for linear operators
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
92D25 Population dynamics (general)

References:

[1] A. Amir, Cell size regulation in bacteria,, Physical Review Letters, 112 (2014) · doi:10.1103/PhysRevLett.112.208102
[2] V. Bansaye, Limit theorems for Markov processes indexed by continuous time Galton-Watson trees,, The Annals of Applied Probability, 21, 2263 (2011) · Zbl 1235.60114 · doi:10.1214/10-AAP757
[3] F. Billy, Synchronisation and control of proliferation in cycling cell population models with age structure,, Mathematics and Computers in Simulation, 96, 66 (2014) · Zbl 1519.92024 · doi:10.1016/j.matcom.2012.03.005
[4] H. Brezis, <em>Functional Analysis, Sobolev Spaces and Partial Differential Equations,</em>, Springer (2011) · Zbl 1220.46002
[5] V. Calvez, Self-similarity in a general aggregation-fragmentation problem. Application to fitness analysis,, Journal de mathématiques pures et appliquées, 98, 1 (2012) · Zbl 1259.35151 · doi:10.1016/j.matpur.2012.01.004
[6] F. Campillo, <em>On the Variations of the Principal Eigenvalue and the Probability of Survival with Respect to a Parameter in Growth-Fragmentation-Death Models</em>,, \arXiv{1601.02516}.
[7] J. Clairambault, Circadian rhythm and tumour growth,, Comptes Rendus Mathematique de l’Académie des Sciences Paris, 342, 17 (2006) · Zbl 1089.92022 · doi:10.1016/j.crma.2005.10.029
[8] B. Cloez, <em>Limit Theorems for some Branching Measure-Valued Processes</em>,, \arXiv{1106.0660}.
[9] R. Dautray, <em>Mathematical Analysis and Numerical Methods for Science and Technology,</em>, Springer-Verlag (1990) · Zbl 0683.35001
[10] M. Doumic, Analysis of a population model structured by the cells molecular content,, Mathematical Modelling of Natural Phenomena, 2, 121 (2007) · Zbl 1337.92174 · doi:10.1051/mmnp:2007006
[11] M. Doumic, Eigenelements of a general aggregation-fragmentation model,, Mathematical Models and Methods in Applied Sciences, 20, 757 (2010) · Zbl 1201.35086 · doi:10.1142/S021820251000443X
[12] M. Doumic, Statistical estimation of a growth-fragmentation model observed on a genealogical tree,, Bernoulli, 21, 1760 (2015) · Zbl 1388.62318 · doi:10.3150/14-BEJ623
[13] S. Gaubert, Discrete limit and monotonicity properties of the Floquet eigenvalue in an age structured cell division cycle model,, Journal of Mathematical Biology, 71, 1663 (2015) · Zbl 1359.37148 · doi:10.1007/s00285-015-0874-3
[14] J. Guyon, Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging,, The Annals of Applied Probability, 17, 1538 (2007) · Zbl 1143.62049 · doi:10.1214/105051607000000195
[15] D. J. Kiviet, Stochasticity of metabolism and growth at the single-cell level,, Nature, 514, 376 (2014) · doi:10.1038/nature13582
[16] J. L. Lebowitz, A theory for the age and generation time distribution of a microbial population,, Journal of Mathematical Biology, 1, 17 (1974) · Zbl 0402.92023 · doi:10.1007/BF02339486
[17] A. G. Marr, Growth and division of Escherichia coli,, Journal of Bacteriology, 91, 2388 (1966)
[18] J. A. J. Metz, Formulating models for structured populations,, In The dynamics of physiologically structured populations (Amsterdam, 68, 78 (1986) · Zbl 0614.92014 · doi:10.1007/978-3-662-13159-6_3
[19] P. Michel, Optimal proliferation rate in a cell division model,, Mathematical Modelling of Natural Phenomena, 1, 23 (2006) · Zbl 1337.92048 · doi:10.1051/mmnp:2008002
[20] S. Mischler, Stability in a nonlinear population maturation model,, Mathematical Models and Methods in Applied Sciences, 12, 1751 (2002) · Zbl 1020.92025 · doi:10.1142/S021820250200232X
[21] S. Mischler, Spectral analysis of semigroups and growth-fragmentation equations,, Annales de l’Institut Henri Poincaré (C) Analyse Non Linéaire, 33, 849 (2016) · Zbl 1357.47044 · doi:10.1016/j.anihpc.2015.01.007
[22] A. Olivier, <em>Statistical Analysis of Growth-Fragmentation Models</em>,, Ph.D thesis (2015)
[23] M. Osella, Concerted control of Escherichia coli cell division,, PNAS, 111, 3431 (2014)
[24] B. Perthame, <em>Transport Equations Arising In Biology,</em>, Birckhäuser Frontiers in mathematics edition (2007) · Zbl 1185.92006
[25] L. Robert, <em>Division Control in Escherichia Coli is Based on a Size-Sensing Rather than a Timing Mechanism</em>,, BMC Biology (2014)
[26] M. Rotenberg, Transport theory for growing cell populations,, Journal of Theoretical Biology, 103, 181 (1983) · doi:10.1016/0022-5193(83)90024-3
[27] M. Schaechter, Growth, Cell and Nuclear Divisions in some Bacteria,, Microbiology, 29, 421 (1962) · doi:10.1099/00221287-29-3-421
[28] I. Soifer, Single-cell analysis of growth in budding yeast and bacteria reveals a common size regulation strategy,, Current Biology, 26, 356 (2016) · doi:10.1016/j.cub.2015.11.067
[29] S. Taheri-Araghi, Cell-size control and homeostasis in bacteria,, Current Biology, 25, 385 (2015) · doi:10.1016/j.cub.2014.12.009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.