×

Sensitivity analysis of long-term cash flows. (English) Zbl 1416.91382

Summary: This paper conducts a sensitivity analysis of long-term cash flows. The price of the cash flow at time zero is given by the pricing operator of a Markov diffusion acting on the cash flow function. We study the extent to which the price of the cash flow is affected by small perturbations of the underlying Markov diffusion. The main tool is the Hansen-Scheinkman decomposition, which is a method to express the cash flow in terms of eigenvalues and eigenfunctions of the pricing operator. By incorporating techniques developed by E. Fournié et al. [Finance Stoch. 3, No. 4, 391–412 (1999; Zbl 0947.60066)], the sensitivities of long-term cash flows can be represented via simple expressions in terms of eigenvalues and eigenfunctions.

MSC:

91G20 Derivative securities (option pricing, hedging, etc.)
60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)

Citations:

Zbl 0947.60066

References:

[1] Ahn, D.-H.; Gao, B., A parametric nonlinear model of term structure dynamics, Rev. Financ. Stud., 12, 721-762, (1999) · doi:10.1093/rfs/12.4.721
[2] Baños, D. R.; Meyer-Brandis, T.; Proske, F. N.; Duedahl, S., Computing deltas without derivatives, Finance Stoch., 21, 509-549, (2017) · Zbl 1378.91117 · doi:10.1007/s00780-016-0321-3
[3] Bellet, L. R.; Attal, S. (ed.); etal., Ergodic properties of Markov processes, No. 1881, 1-39, (2006), Berlin · Zbl 1126.60057 · doi:10.1007/3-540-33966-3_1
[4] Benhamou, E., Optimal Malliavin weighting function for the computation of the Greeks, Math. Finance, 13, 37-53, (2003) · Zbl 1049.91058 · doi:10.1111/1467-9965.t01-1-00004
[5] Borovička, J.; Hansen, L. P.; Hendricks, M.; Scheinkman, J. A., Risk-price dynamics, J. Financ. Econom., 9, 3-65, (2011) · doi:10.1093/jjfinec/nbq030
[6] Borovička, J.; Hansen, L. P.; Scheinkman, J. A., Shock elasticities and impulse responses, Math. Financ. Econ., 8, 333-354, (2014) · Zbl 1307.91124 · doi:10.1007/s11579-014-0122-4
[7] Cattiaux, P.; Chafaï, D. (ed.); etal., Long time behavior of Markov processes, No. 44, 110-128, (2014), Les Ulis · Zbl 1338.60177
[8] Chen, N.; Glasserman, P., Malliavin Greeks without Malliavin calculus, Stoch. Process. Appl., 117, 1689-1723, (2007) · Zbl 1133.60030 · doi:10.1016/j.spa.2007.03.012
[9] Davis, M. H.A.; Johansson, M. P., Malliavin Monte Carlo Greeks for jump diffusions, Stoch. Process. Appl., 116, 101-129, (2006) · Zbl 1081.60040 · doi:10.1016/j.spa.2005.08.002
[10] Di Nunno, G., Øksendal, B.K., Proske, F.: Malliavin Calculus for Lévy Processes with Applications to Finance. Springer, Berlin (2009) · Zbl 1528.60001 · doi:10.1007/978-3-540-78572-9
[11] El-Khatib, Y.; Privault, N., Computations of Greeks in a market with jumps via the Malliavin calculus, Finance Stoch., 8, 161-179, (2004) · Zbl 1098.91050 · doi:10.1007/s00780-003-0111-6
[12] Fournié, E.; Lasry, J.-M.; Lebuchoux, J.; Lions, P.-L.; Touzi, N., Applications of Malliavin calculus to Monte Carlo methods in finance, Finance Stoch., 3, 391-412, (1999) · Zbl 0947.60066 · doi:10.1007/s007800050068
[13] Gobet, E.; Munos, R., Sensitivity analysis using Itô-Malliavin calculus and martingales, and application to stochastic optimal control, SIAM J. Control Optim., 43, 1676-1713, (2005) · Zbl 1116.60033 · doi:10.1137/S0363012902419059
[14] Hansen, L. P., Dynamic valuation decomposition within stochastic economies, Econometrica, 80, 911-967, (2012) · Zbl 1274.91309 · doi:10.3982/ECTA8070
[15] Hansen, L. P.; Scheinkman, J. A., Long-term risk: an operator approach, Econometrica, 77, 177-234, (2009) · Zbl 1160.91367 · doi:10.3982/ECTA6761
[16] Hansen, L. P.; Scheinkman, J. A., Pricing growth-rate risk, Finance Stoch., 16, 1-15, (2012) · Zbl 1262.91069 · doi:10.1007/s00780-010-0141-9
[17] Jeanblanc, M., Yor, M., Chesney, M.: Mathematical Methods for Financial Markets. Springer, Berlin (2009) · Zbl 1205.91003 · doi:10.1007/978-1-84628-737-4
[18] Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, Berlin (1991) · Zbl 0734.60060
[19] Leung, T.; Sircar, R., Implied volatility of leveraged ETF options, Appl. Math. Finance, 22, 162-188, (2015) · Zbl 1396.91748 · doi:10.1080/1350486X.2014.975825
[20] Meyn, S. P.; Tweedie, R. L., Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes, Adv. Appl. Probab., 25, 518-548, (1993) · Zbl 0781.60053 · doi:10.2307/1427522
[21] Nualart, D.: The Malliavin Calculus and Related Topics. Springer, Berlin (2006) · Zbl 1099.60003
[22] Pinsky, R.G.: Positive Harmonic Functions and Diffusion. Cambridge University Press, Cambridge (1995) · Zbl 0858.31001 · doi:10.1017/CBO9780511526244
[23] Qin, L.; Linetsky, V., Positive eigenfunctions of Markovian pricing operators: Hansen-Scheinkman factorization, Ross recovery, and long-term pricing, Oper. Res., 64, 99-117, (2016) · Zbl 1338.90447 · doi:10.1287/opre.2015.1449
[24] Sun, J.-g., Perturbation theory for algebraic Riccati equations, SIAM J. Matrix Anal. Appl., 19, 39-65, (1998) · Zbl 0914.15009 · doi:10.1137/S0895479895291303
[25] Sun, J.-g., Condition numbers of algebraic Riccati equations in the Frobenius norm, Linear Algebra Appl., 350, 237-261, (2002) · Zbl 1003.15004 · doi:10.1016/S0024-3795(02)00294-X
[26] Wong, B.; Heyde, C. C., On changes of measure in stochastic volatility models, Int. J. Stoch. Anal., 2006, 1-13, (2006) · Zbl 1147.60321
[27] Zhang, J.; Li, S.; Song, R., Quasi-stationarity and quasi-ergodicity of general Markov processes, Sci. China Math., 57, 2013-2024, (2014) · Zbl 1309.60078 · doi:10.1007/s11425-014-4835-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.