×

Reduced representations of assumed fields for Hu-Washizu solid-shell element. (English) Zbl 1522.74104

Mixed eight-node (hexahedron) solid-shell finite elements based on the standard or partial version of the Hu-Washizu (HW) functional are developed. Three reduced representations of stress/strain fields are used. The element improves effectiveness of algorithms, yet retaining good accuracy and convergence properties. The efficiency of the proposed solid-shell HW elements is demonstrated on several linear and non-linear examples for the linear elastic materials and hyper-elastic materials. The proposed finite elements are compared to each other and to known finite elements.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K25 Shells
74B20 Nonlinear elasticity
74B05 Classical linear elasticity

Software:

ompFEAP; FEAP; AceFEM; NASTRAN

References:

[1] Andelfinger, U.; Ramm, E., EAS-elements for 2D- and 3D-, plate and shell structures and their equivalence to HR-elements, Int J Numer Methods Eng, 36, 1311-1337 (1993) · Zbl 0772.73071
[2] Andelfinger U, Ramm E, Roehl D (1992) 2D- and 3D-enhanced assumed strain elements and their application in plasticity. In: Proc. COMPLAST 111, 1997-2007, Barcelona, Spain, 1992
[3] Argyris, J.; Balmer, H.; Doltsinis, JST; Dunne, PC; Haase, M.; Kleiber, M.; Malejannakis, GA; Mlejenek, JP; Muller, M.; Scharp, DW, Finite element method—the natural approach, Comput Methods Appl Mech Eng, 17, 18, 1-106 (1979) · Zbl 0407.73058
[4] Belytschko, T.; Stolarski, H.; Liu, WK; Carpenter, N.; Ong, JSJ, Stress projection for membrane and shear locking in shell finite elements, Comput Methods Appl Mech Eng, 51, 221-258 (1985) · Zbl 0581.73091
[5] Betsch, P.; Gruttmann, F.; Stein, E., A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains, Comput Methods Appl Mech Eng, 130, 57-79 (1996) · Zbl 0861.73068
[6] Betsch, P.; Stein, E., An assumed strain approach avoiding artificial thickness straining for a non-linear 4-node shell element, Commun Numer Methods Eng, 11, 899-909 (1995) · Zbl 0833.73051
[7] Büchter, N.; Ramm, E.; Roehl, D., Three-dimensional extension of nonlinear shell formulation based on the enhanced assumed strain concept, Int J Numer Methods Eng, 37, 2551-2568 (1994) · Zbl 0808.73046
[8] Cook, RD, A plane hybrid element with rotational d.o.f. and adjustable stiffness, Int J Numer Methods Eng, 24, 1499-1508 (1987) · Zbl 0615.73084
[9] Chróścielewski, J.; Makowski, J.; Stumpf, H., Genuinely resultant shell finite elements accounting for geometric and material nonlinearity, Int J Numer Methods Eng, 35, 63-94 (1992) · Zbl 0780.73075
[10] Chróścielewski, J.; Makowski, J.; Pietraszkiewicz, W., Statics and dynamics of multi-segmented shells. Nonlinear theory and finite element method (2004), Warsaw: IFTR PAS Publisher, Warsaw
[11] Crisfield, MA; Moita, GF; Jelenic, G.; Lyons, LPR, Enhanced lower-order element formulation for large strains, Comput Mech, 17, 62-73 (1995) · Zbl 0840.73059
[12] Dvorkin, EN; Bathe, K-J, A continuum mechanics based four-node shell element for general nonlinear analysis, Eng Comput, 1, 77-88 (1984)
[13] Glasier, S.; Armero, F., On the formulation of enhanced strain finite elements in finite deformations, Eng Comput, 14, 7, 759-791 (1997) · Zbl 1071.74699
[14] Harnau M, Schweitzerhof K, Hauptmann R (2000) On solid-shell elements with linear and quadratic shape functions for small and large displacements. In: ECCOMAS Congress, Barcelona 11-14 September 2000, pp 1-27
[15] Hauptmann, R.; Doll, S.; Harnau, M.; Schweizerhof, K., “Solid-shell” elements with linear and quadratic shape functions at large deformations with nearly incompressible materials, Comput Struct, 79, 1671-85 (2001)
[16] Hauptmann, R.; Schweizerhof, K.; Doll, S., Extension of the solid-shell concept for large elastic and large elastoplastic deformations, Int J Numer Methods Eng, 49, 1121-41 (2000) · Zbl 1048.74041
[17] Hauptmann, R.; Schweizerhof, K., A systematic development of ‘solid-shell’ element formulations for linear and non-linear analyses employing only displacement degrees of freedom, Int J Numer Methods Eng, 42, 49-69 (1998) · Zbl 0917.73067
[18] Jarzebski, P.; Wisniewski, K.; Taylor, RL, On parallelization of the loop over elements in FEAP, Comput Mech, 56, 1, 77-86 (2015) · Zbl 1329.65337
[19] Klinkel, S.; Gruttmann, F.; Wagner, W., A continuum based three-dimensional shell element for laminated structures, Comput Struct, 71, 1, 43-62 (1999)
[20] Klinkel, S.; Gruttmann, F.; Wagner, W., A robust non-linear solid shell element based on a mixed variational formulation, Comput Methods Appl Mech Eng, 195, 179-201 (2006) · Zbl 1106.74058
[21] Koschnick, F.; Bischoff, GA; Camprubi, N.; Bletzinger, KU, The discrete strain gap method and membrane locking, Comput Methods Appl Mech Eng, 194, 2444-2463 (2005) · Zbl 1082.74053
[22] Korelc, J., Multi-language and multi-environment generation of nonlinear finite element codes, Eng Comput, 18, 312-327 (2002)
[23] Korelc, J.; Solinc, U.; Wriggers, P., An improved EAS brick element for finite deformation, Comput Mech, 46, 641-659 (2010) · Zbl 1358.74059
[24] Korelc, J.; Wriggers, P., An efficient 3D enhanced strain element with Taylor expansion of the shape functions, Comput Mech, 19, 30-40 (1996) · Zbl 0888.73062
[25] Korelc, J.; Wriggers, P., Automation of finite element methods (2016), Berlin: Springer, Berlin · Zbl 1367.74001
[26] MacNeal, RH, A simple quadrilateral shell element, Comput Struct, 8, 2, 175-183 (1978) · Zbl 0369.73085
[27] MacNeal, RH; Hughes, TJR; Hinton, E., The evolution of lower order plate and shell elements in MSC/NASTRAN. Element technology, Finite element methods for plate and shell structures (1986), Swansea: Pineridge Press, Swansea
[28] MacNeal, RH, Finite elements: their design and performance. Mechanical engineering (1994), New York: Marcel Dekker Inc., New York
[29] MacNeal, RH; Harder, RL, A proposed standard set of problems to test finite element accuracy, Finite Elem Anal Des, 1, 3-20 (1985)
[30] Makowski, J.; Stumpf, H.; Pietraszkiewicz, W., Finite strains and rotations in shells, “Finite rotations in structural mechanics”, 175-194 (1986), Berlin: Springer, Berlin · Zbl 0615.73042
[31] Parisch, H., A continuum-based shell theory for non-linear applications, Int J Numer Methods Eng, 38, 1855-1883 (1995) · Zbl 0826.73041
[32] Pian, THH; Sumihara, K., Rational approach for assumed stress finite elements, Int J Numer Methods Eng, 20, 1685-1695 (1984) · Zbl 0544.73095
[33] Pian, THH; Tong, P., Relations between incompatible displacements and hybrid stress model, Int J Numer Methods Eng, 22, 2331-2343 (1986)
[34] Piltner, R.; Taylor, RL, A quadrilateral mixed finite element with two enhanced strain modes, Int J Numer Methods Eng, 38, 1783-1808 (1995) · Zbl 0824.73073
[35] Puso, MA, A highly efficient enhanced assumed strain physically stabilized hexahedral element, Int J Numer Methods Eng, 49, 1029-1064 (2000) · Zbl 0994.74075
[36] Rah, K.; Van Paepegem, W.; Habraken, AM; Degrieck, J.; Alves de Sousa, RJ; Valente, RAF, Optimal low-order fully integrated solid-shell elements, Comput Mech, 51, 309-326 (2013) · Zbl 1398.74393
[37] Simo, JC; Armero, F.; Taylor, RL, Improved version of assumed enhanced strain tri-linear element for 3D finite deformation problems, Comput Methods Appl Mech Eng, 73, 53-92 (1993)
[38] Simo, JC; Rifai, MS; Fox, DD, On stress resultant geometrically exact shell model. Part IV. Variable thickness shells with through-the-thickness stretching, Comput Methods Appl Mech Eng, 81, 91-126 (1990) · Zbl 0746.73016
[39] Simo, JC; Rifai, MS, A class of mixed assumed strain methods and the method of incompatible modes, Int J Numer Methods Eng, 29, 1595-1638 (1990) · Zbl 0724.73222
[40] Stumpf, H.; Makowski, J., On large strain deformations of shells, Acta Mech, 65, 153-168 (1986) · Zbl 0602.73035
[41] Taylor RL (2010) Program FEAP, Ver. 8.3. University of California, Berkeley
[42] Tessler, A.; Hughes, TJR, An improved treatment of transverse shear in the Mindlin-type four-node quadrilateral element, Comput Methods Appl Mech Eng, 39, 311-335 (1983) · Zbl 0501.73072
[43] Vu-Quoc, L.; Tan, XG, Optimal solid shells for non-linear analyses of multilayer composites. I, Stat Comput Methods Appl Mech Eng, 192, 975-1016 (2003) · Zbl 1091.74524
[44] Wagner, W.; Gruttmann, F., A robust nonlinear mixed hybrid quadrilateral shell element, Int J Numer Methods Eng, 64, 635-666 (2005) · Zbl 1122.74526
[45] Wagner, W.; Gruttmann, F.; Altenbach, H., On a simple shell model for thin structures with functionally graded materials, Recent developments in the theory of shells, advanced structured materials, 687-710 (2019), Berlin: Springer, Berlin · Zbl 1461.74047
[46] Weissman, SL, High-accuracy low-order three-dimensional brick elements, Int J Numer Methods Eng, 39, 2337-2361 (1996) · Zbl 0884.73074
[47] Wilson, EL; Taylor, RL; Doherty, WP; Ghaboussi, J.; Fenves, SJ; Perrone, N.; Robinson, AR; Schnobrich, WC, Incompatible displacement models, Numerical and computer methods in finite element analysis, 43-57 (1973), New York: Academic Press, New York
[48] Wisniewski K (2010) Finite rotation shells. Basic equations and finite elements for reissner kinematics. CIMNE-Springer · Zbl 1201.74004
[49] Wisniewski, K.; Panasz, P., Two improvements in formulation of nine-node element MITC9, Int J Numer Methods Eng, 93, 612-634 (2013) · Zbl 1352.74448
[50] Wisniewski, K.; Turska, E., Improved four-node Hellinger-Reissner elements based on skew coordinates, Int J Numer Methods Eng, 76, 798-836 (2008) · Zbl 1195.74207
[51] Wisniewski, K.; Turska, E., Improved four-node Hu-Washizu elements based on skew coordinates, Comput Struct, 87, 407-424 (2009)
[52] Wisniewski, K.; Turska, E., Four-node mixed Hu-Washizu shell element with drilling rotation, Int J Numer Methods Eng, 90, 506-536 (2012) · Zbl 1242.74173
[53] Wisniewski, K.; Turska, E., Improved nine-node shell element MITC9i with reduced distortion sensitivity, Comput Mech, 62, 499-523 (2018) · Zbl 1460.74084
[54] Wisniewski K, Turska E (2019) On performance of nine-node quadrilateral shell elements 9-EAS11 and MITC9i. In: Altenbach H et al. (eds) Recent developments in the theory of shells, series “advanced structured materials”, vol 110. Springer, pp 711-725 · Zbl 1465.74170
[55] Wisniewski K, Turska E (2020) On transverse shear strains treatment in nine-node shell element MITC9i. In: Altenbach H, Chinchaladze N, Kienzler R, Müller W (eds) Analysis of shells, plates, and beams. Series: “advanced structured materials”, vol 134. Springer, pp 421-440 · Zbl 1477.74111
[56] Wisniewski, K.; Wagner, W.; Turska, E.; Gruttmann, F., Four-node Hu-Washizu elements based on skew coordinates and contravariant assumed strain, Comput Struct, 88, 1278-1284 (2010)
[57] Wriggers P (2008) Nonlinear finite element methods. Springer, Berlin · Zbl 1153.74001
[58] Wriggers, P.; Korelc, J., On enhanced strain methods for small and finite deformations of solids, Comput Mech, 18, 6, 413-428 (1996) · Zbl 0894.73179
[59] Wriggers, P.; Reese, S., A note on enhanced strain methods for large deformations, Comput Methods Appl Mech Eng, 135, 3-4, 201-209 (1996) · Zbl 0893.73072
[60] Yuan, K-Y; Huang, Y-S; Pian, THH, New strategy for assumed stress for 4-node hybrid stress membrane element, Int J Numer Methods Eng, 36, 1747-1763 (1993) · Zbl 0772.73086
[61] Zienkiewicz OC, Taylor RL (1989) The finite element method, vol 1, 4th edn. McGraw-Hill, Basic Formulation and Linear Problems
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.