×

Targeted multiobjective Dijkstra algorithm. (English) Zbl 1529.90088

Summary: We introduce the Targeted Multiobjective Dijkstra Algorithm (T-MDA), a label setting algorithm for the One-to-One Multiobjective Shortest Path (MOSP) Problem. It is based on the recently published Multiobjective Dijkstra Algorithm (MDA) and equips it with \(\mathrm{A}^*\)-like techniques. For any explored subpath, a label setting MOSP algorithm decides whether the subpath can be discarded or must be stored as part of the output. A major design choice is how to store subpaths from the moment they are first explored until the mentioned final decision can be made. The T-MDA combines the polynomially bounded size of the priority queue used in the MDA and a lazy management of paths that are not in the queue. The running time bounds from the MDA remain valid. In practice, the T-MDA outperforms known algorithms from the literature and the increased memory consumption is negligible. In this paper, we benchmark the T-MDA against an improved version of the state of the art \(\text{NAMOA}_{\text{dr}}^{\ast}\) One-to-One MOSP algorithm from the literature on a standard testbed.
© 2023 The Authors. Networks published by Wiley Periodicals LLC.

MSC:

90C59 Approximation methods and heuristics in mathematical programming
90C39 Dynamic programming

Software:

DIMACS

References:

[1] S.Ahmadi, G.Tack, D.Harabor, and P.Kilby. Bi‐objective search with bi‐directional a*, 29th annual European symposium on algorithms (ESA 2021), Vol. 204 of Leibniz international proceedings in informatics (LIPIcs), Schloss Dagstuhl-Leibniz‐Zentrum für Informatik, Dagstuhl, Germany. 2021 3:1-3:15. · Zbl 1473.68018
[2] M.Baum, J.Dibbelt, D.Wagner, and T.Zündorf, Modeling and engineering constrained shortest path algorithms for battery electric vehicles, Transp. Sci.54 (2020), 1571-1600.
[3] M.Blanco, R.Borndörfer, and P. M.de lasCasas. An a* algorithm for flight planning based on idealized vertical profiles, 22nd symposium on algorithmic approaches for transportation modelling, optimization, and systems (ATMOS 2022), Vol. 106 of open access series in informatics (OASIcs), Schloss Dagstuhl-Leibniz‐Zentrum für Informatik, Dagstuhl, Germany. 2022 1:1-1:15. · Zbl 1496.90006
[4] F. K.Bökler, Output‐sensitive complexity of multiobjective combinatorial optimization with an application to the multiobjective shortest path problem, Ph.D. thesis, Technische Universität Dortmund, Dortmund, 2018.
[5] C.Demetrescu, A.Goldberg, and D.Johnson. 9th DIMACS Implementation Challenge-Shortest Paths. 2009http://www.diag.uniroma1.it//∼challenge9/.
[6] E. W.Dijkstra, A note on two problems in connexion with graphs, Numer. Math1 (1959), 269-271. · Zbl 0092.16002
[7] M.Ehrgott, Multicriteria optimization, Springer‐Verlag, Heidelberg, 2005. · Zbl 1132.90001
[8] A. V.Goldberg, H.Kaplan, and R. F.Werneck. Reach for A*: Shortest path algorithms with preprocessing. The Shortest Path Problem 2006.
[9] P. E.Hart, N. J.Nilsson, and B.Raphael, A formal basis for the heuristic determination of minimum cost paths, IEEE Trans. Syst. Sci. Cybern4 (1968), 100-107.
[10] L.Mandow and J. L.Pérez‐de‐la Cruz. A new approach to multiobjective a* search, IJCAI. 2005.
[11] L.Mandow and J. L.Pérez De La Cruz, Multiobjective a* search with consistent heuristics, J. ACM57 (2010), 1-25. · Zbl 1327.68226
[12] P. Maristanyde lasCasas. Targeted Multiobjective Dijkstra Algorithm: Initial Release. 2023https://doi.org/10.5281/zenodo.7702018. · doi:10.5281/zenodo.7702018
[13] P. Maristanyde lasCasas, R.Borndörfer, L.Kraus, and A.Sedeño‐Noda, An FPTAS for dynamic multiobjective shortest path problems, Algorithms14 (2021), 43.
[14] P. Maristanyde lasCasas, A.Sedeño‐Noda, and R.Borndörfer, An improved multiobjective shortest path algorithm, Comput. Oper. Res. 135 (2021). · Zbl 1511.90407
[15] E. Q. V.Martins, On a multicriteria shortest path problem, Eur. J. Oper. Res.16 (1984), 236-245. · Zbl 0533.90090
[16] J. M.Paixão and J. L.Santos, “Computational intelligence and decision making,” Labeling methods for the general case of the multi‐objective shortest path problem-A computational study, Springer Netherlands, Dordrecht, 2013, pp. 489-502.
[17] F. J.Pulido, L.Mandow, and J. L.de laCruz, Multiobjective shortest path problems with lexicographic goal‐based preferences, Eur. J. Oper. Res.239 (2014), 89-101. · Zbl 1339.90287
[18] F. J.Pulido, L.Mandow, and J. L. P.de laCruz, Dimensionality reduction in multiobjective shortest path search, Comput. Oper. Res.64 (2015), 60-70. · Zbl 1349.90742
[19] A.Raith and M.Ehrgott, A comparison of solution strategies for biobjective shortest path problems, Comput. Oper. Res36 (2009), 1299-1331. · Zbl 1162.90579
[20] A.Raith, M.Schmidt, A.Schöbel, and L.Thom, Extensions of labeling algorithms for multi‐objective uncertain shortest path problems, Networks72 (2018), 84-127. · Zbl 1397.90336
[21] A.Sedeño‐Noda and M.Colebrook, A biobjective Dijkstra algorithm, Eur. J. Oper. Res.276 (2019), 106-118. · Zbl 1430.90517
[22] A.Skriver and K.Andersen, A label correcting approach for solving bicriterion shortest‐path problems, Comput. Oper. Res27 (2000), 507-524. · Zbl 0955.90144
[23] C. H.Ulloa, W.Yeoh, J. A.Baier, H.Zhang, L.Suazo, and S.Koenig. A simple and fast bi‐objective search algorithm. Proceedings of the 30th international conference on automated planning and scheduling (ICAPS), AAAI Press. 2020 143-151.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.