×

Fractional differential operators and generalized oscillatory dynamics. (English) Zbl 1484.26005

Summary: In this paper, a new generalized fractional derivative is introduced holding many important properties. By implementing this new definition inside the Lagrangian \(L: \mathcal{TQ}\to \mathbb{R}\), where \(\mathcal{Q}\) is an \(n\)-dimensional manifold and \(\mathcal{TQ}\) its tangent bundle, the new definition was used to discuss many interesting and general properties of the Lagrangian and Hamiltonian formalisms starting from a fractional actionlike variational approach. Applications of the new formalism for solving some dynamical oscillatory models of fractional order are given. Additional attractive features are explored in some details.

MSC:

26A33 Fractional derivatives and integrals
26A18 Iteration of real functions in one variable

References:

[1] K.S. Miller, B. Ross, An Introduction to the Fractional Integrals and DerivativesTheory and Application. Wiley, New York, 1993. · Zbl 0789.26002
[2] K.B. Oldham, J. Spanier, The Fractional Calculus, Academic, New York, 1974. · Zbl 0292.26011
[3] J. Sabatier, O.P. Agrawal, J.A. Tenreiro Machado, Advance in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, 2007. · Zbl 1116.00014
[4] R. Almeida, D.F.M. Torres, Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives, Commun. Nonlinear Sci. Numer. Simulat. 16 (3) (2011) 1490-1500. · Zbl 1221.49038
[5] R. Almeida, D.F.M. Torres, Fractional variational calculus for nondifferentiable functions, Comput. Math. Appl. 61 (10) (2011) 3097-3104. · Zbl 1222.49026
[6] R. Almeida, A.B. Malinowska, D.F.M. Torres, Fractional Euler-Lagrange differential equations via Caputo derivatives, Fractional Dynamics and Control, Springer New York (2012) Part 2, 109-118.
[7] R. Almeida, S. Pooseh, D.F.M. Torres, Fractional variational problems depending on indefinite integrals, Nonlinear Anal. 75 (3) (2012) 1009-1025. · Zbl 1236.49042
[8] R. Almeida, A.B. Malinowska, D.F.M. Torres, A fractional calculus of variations for multiple integrals with application to vibrating string, J. Math. Phys. 51 (3) (2010) 033503. · Zbl 1309.49003
[9] O.P. Agrawal, Formulation of Euler-Lagrange equations for fractional variational problems, J. Math. Anal. Appl. 272 (2002) 368-379. · Zbl 1070.49013
[10] D. Baleanu, S.I. Muslih, E.M. Rabei, On fractional Euler-Lagrange and Hamilton equations and the fractional generalization of total time derivative, arXiv:0708.1690. · Zbl 1170.70324
[11] J. Cresson, Fractional embedding of differential operators and Lagrangian systems, J. Math. Phys. 48 (2007) 033504. · Zbl 1137.37322
[12] R.A. El-Nabulsi, Fractional variational problems from extended exponentially fractional integral, Applied Mathematics and Computation 217 (22) (2011) 9492-9496. · Zbl 1220.26004
[13] R.A. El-Nabulsi, A periodic functional approach to the calculus of variations and the problem of time dependent damped harmonic oscillators, Applied Mathematics Letters 24 (10) (2011) 1647-1653. · Zbl 1325.37036
[14] R.A.El-Nabulsi, D.F.M. Torres, Necessary optimality conditions for fractional actionlike integrals of variational calculus with Riemann-Liouville derivatives of order (alfa,beta), Math. Methods Appl. Sci. 30 (15) (2007) 1931-1939. · Zbl 1177.49036
[15] R.A. El-Nabulsi, D.F.M. Torres, Fractional actionlike variational problems, J. Math. Phys. 49 (5) (2008) 053521. · Zbl 1152.81422
[16] R.A. El-Nabulsi, A fractional approach to nonconservative Lagrangian dynamical systems, Fizika A14 (4) (2005) 289-298.
[17] R.A. El-Nabulsi, The fractional calculus of variations from extended Erdelyi-Kober operator, Int. J. Mod. Phys. B23 (16) (2009) 3349-3361.
[18] R.A. El-Nabulsi, Universal fractional Euler-Lagrange equation from a generalized fractional derivate operator, Central Europ. J. Phys. 9 (1) (2010) 250-256.
[19] R.A. El-Nabulsi, G.-c. Wu, Fractional complexified field theory from SaxenaKumbhat fraction integral, fractional derivative of order alfa-beta and dynamical fractional integral exponent, African Dias. J. Math. 13 (2) (2012) 45-61. · Zbl 1267.49037
[20] R.A. El-Nabulsi, M. Jamil, G.-c. Wu, Complexified Lie algebroids from a generalized Stieltjes action approach to the calculus of variations, Sarajevo J. Math. 80 (2) (2012) 1-16. · Zbl 1255.49079
[21] R.A. El-Nabulsi, The fractional Boltzmann transport equation, Comp. Math. Appl. 62 (3) (2011) 1568-1575. · Zbl 1228.82075
[22] A.B. Malinowska, M.R.S. Ammi, D.F.M. Torres, Composition functionals in fractional calculus of variations, Commun. Frac. Calc. 1 (2010) 32-40.
[23] A.B. Malinowska, D.F.M. Torres, Euler-Lagrange equations for composition functionals in calculus of variations on time scales, Discrete Contin. Dyn. Syst. 29 (2) (2011) 577-593. · Zbl 1209.49017
[24] A.B. Malinowska, D.F.M. Torres, A general backwards calculus of variations via duality, Optim. Lett. 5 (4) (2011) 587-599. · Zbl 1229.49034
[25] A.B. Malinowska, D.F.M. Torres, Fractional calculus of variations for a combined Caputo derivative, Fract. Calc. Appl. Anal. 14 (4) (2011) 523-537. · Zbl 1273.49025
[26] A.B. Malinowska, D.F.M. Torres, Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative, Comput. Math. Appl. 59 (9) (2010) 3110-3116. · Zbl 1193.49023
[27] A.B. Malinowska, D.F.M. Torres, Multiobjective fractional variational calculus in terms of a combined Caputo derivative, Appl. Math. Comput. 218 (9) (2012) 5099- 5111. · Zbl 1238.49029
[28] N. Martins, D.F.M. Torres, Noether’s symmetry theorem for nabla problems of the calculus of variations, Appl. Math. Lett. 23 (12) (2010) 1432-1438. · Zbl 1205.49033
[29] Y.F. Luchko, H. Martinez and J.J. Trujillo, Fractional Fourier transform and some of its applications, Frac. Cal. Appl. Anal. 11 (4) (2008) 457-470. · Zbl 1175.26016
[30] P. Weiss, Born’s Electrodynamics in complex form, Proc. Camb. Philo. Soc., 33 (1937) 79-93. · JFM 63.0707.03
[31] P. Polesello, P. Schapira, Stacks of quantization-deformation modules on complex symplectic manifolds, Int. Math. Res. Notices 49 (2004) 2637-2664. · Zbl 1086.53107
[32] M. Tekkoyum, A. Gorgulu, Complex Lagrangian mechanics with constraints, arXiv:0902.4128.
[33] I. Podlubny, The Laplace transform method for linear differential equations of the fractional order, In: I. Podlubny, Fractional Differential Equations, Academic Press, San Diego (1999), Chapters 4-5. · Zbl 0924.34008
[34] C.M. Bender, D.D. Holm, D.W. Hook, Complexified dynamical systems, J. Phys. A40 (2007) F793-F804. · Zbl 1120.37050
[35] S. Ghosh, S.K. Modak, Classical oscillator with position-dependent mass in a complex domain, Phys. Lett. A373 (2009) 1212-1232. · Zbl 1228.70010
[36] K.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.