×

Rationality for isobaric automorphic representations: the CM-case. (English) Zbl 1451.11040

Summary: In this note, we prove a simultaneous extension of the author’s joint result with M. Harrisfor critical values of Rankin-Selberg \(L\)-functions \(L(s,\Pi \times \Pi ')\) [J. Inst. Math. Jussieu 15, No. 4, 711–769 (2016; Zbl 1423.11096), Theorem 3.9] to (i) general CM-fields \(F\) and (ii) cohomological automorphic representations \(\Pi '=\Pi _1\boxplus \dots \boxplus \Pi _k\) which are the isobaric sum of unitary cuspidal automorphic representations \(\Pi _i\) of general linear groups of arbitrary rank over \(F\). In this sense, the main result of these notes, cf. Theorem 1.9, is a generalization, as well as a complement, of the main results of A. Raghuram [“Critical values of Rankin-Selberg \(L\)-functions for \(GL_n \times GL_{n-1}\) and the symmetric cube \(L\)-functions for \(GL_2\)”, Forum Math. 28, No. 3 (2016; doi:10.1515/forum-2014-0043); Int. Math. Res. Not. 2010, No. 2, 334–372 (2010; Zbl 1221.11128)] and J. Mahnkopf [J. Inst. Math. Jussieu 4, No. 4, 553–637 (2005; Zbl 1086.14019)].

MSC:

11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
11F70 Representation-theoretic methods; automorphic representations over local and global fields
11G18 Arithmetic aspects of modular and Shimura varieties
11R39 Langlands-Weil conjectures, nonabelian class field theory
22E55 Representations of Lie and linear algebraic groups over global fields and adèle rings

References:

[1] Baruch, EM, A proof of kirillov’s conjecture, Ann. Math., 158, 207-252, (2003) · Zbl 1034.22010 · doi:10.4007/annals.2003.158.207
[2] Bernstein, J.N.: P-invariant distributions on \(\text{GL}(N)\) and the classification of unitary representations of \(\text{ GL }(N)\) (non-Archimedean case). In: Lie Group Representations, II, (College Park, Md., 1982/1983) Lecture Notes in Mathematics, vol. 1041, pp. 50-102 (1984) · Zbl 1423.11096
[3] Borel, A.: Cohomology and spectrum of an arithmetic group. In: Proceedings of a Conference on Operator Algebras and Group Representations, Neptun, Rumania (1980), Pitman, pp. 28-45 (1983) · Zbl 0525.22013
[4] Borel, A; Casselman, W, \(L^2\)-cohomology of locally symmetric manifolds of finite volume, Duke Math. J., 50, 625-647, (1983) · Zbl 0528.22012 · doi:10.1215/S0012-7094-83-05029-9
[5] Borel, A., Wallach, N.: Continuous cohomology, discrete subgroups and representations of reductive groups. Ann. Math. Stud. 94 (Princeton Univ. Press, New Jersey) (1980) · Zbl 0443.22010
[6] Clozel, L.: Motifs et Formes Automorphes: Applications du Principe de Fonctorialité. In: Clozel, L., Milne, J.S. (eds.) Automorphic Forms, Shimura Varieties, and \(L\)-functions, Vol. I, Perspect. Math., vol. 10 (Ann Arbor, MI, 1988) Academic Press, Boston, MA, pp. 77-159 (1990) · Zbl 0316.12010
[7] Cogdell, J.W., Piatetski-Shapiro, I.I., Shahidi, F.: Functoriality for the Quasisplit Classical Groups. In: Arthur, J., Cogdell, J.W., Gelbart, S., Goldberg, D., Ramakrishnan, D., Yu, J.-K. (eds.) On Certain L-functions, Clay Mathematics Proceedings, vol. 13 (West Lafayette, IN, 2007) AMS, Providence, RI, pp. 117-140 (2011) · Zbl 1235.22025
[8] Enright, TJ, Relative Lie algebra cohomology and unitary representations of complex Lie groups, Duke Math. J., 46, 513-525, (1979) · Zbl 0427.22010 · doi:10.1215/S0012-7094-79-04626-X
[9] Franke, J, Harmonic analysis in weighted \(L_2\)-spaces, Ann. Sci. de l’ENS, 31, 181-279, (1998) · Zbl 0938.11026
[10] Franke, J; Schwermer, J, A decomposition of spaces of automorphic forms, and the Eisenstein cohomology of arithmetic groups, Math. Ann., 311, 765-790, (1998) · Zbl 0924.11042 · doi:10.1007/s002080050208
[11] Grobner, H, Residues of Eisenstein series and the automorphic cohomology of reductive groups, Compos. Math., 149, 1061-1090, (2013) · Zbl 1312.11044 · doi:10.1112/S0010437X12000863
[12] Grobner, H; Harris, M, Whittaker periods, motivic periods, and special values of tensor product \({L}\)-functions, J. Inst. Math. Jussieu, 15, 711-769, (2016) · Zbl 1423.11096 · doi:10.1017/S1474748014000462
[13] Grobner, H; Raghuram, A, On some arithmetic properties of automorphic forms of \(GL_m\) over a division algebra, Int. J. Number Theory, 10, 963-1013, (2014) · Zbl 1309.11044 · doi:10.1142/S1793042114500110
[14] Harder, G.: General aspects in the theory of modular symbols. In: Bertin, M.-J. (ed.) Séminaire de Théorie des Nombres, Paris 1981-82. Progress in Mathematics 38 (Boston, Basel, Stuttgart 1983), pp. 73-88 · Zbl 0535.22017
[15] Harder, G., Raghuram, A.: Eisenstein cohomology for \(GL(N)\) and ratios of critical values of Rankin-Selberg \(L\)-functions. With Appendix 1 by Uwe Weselmann and Appendix 2 by Chandrasheel Bhagwat and A. Raghuram, preprint (2017) · Zbl 0491.10020
[16] Jacquet, H., Langlands, R.P.: Automorphic Forms on \(GL(2)\), Lecture Notes in Mathematics, vol. 114. Springer (1970) · Zbl 0236.12010
[17] Jacquet, H; Piatetski-Shapiro, I; Shalika, J, Conducteur des représentations du groupe linéaire, Math. Ann., 256, 199-214, (1981) · Zbl 0443.22013 · doi:10.1007/BF01450798
[18] Jacquet, H; Piatetski-Shapiro, II; Shalika, J, Rankin-Selberg convolutions, Am. J. Math., 105, 367-464, (1983) · Zbl 0525.22018 · doi:10.2307/2374264
[19] Jacquet, H; Shalika, J, On Euler products and the classification of automorphic representations II, Am. J. Math., 103, 777-815, (1981) · Zbl 0491.10020 · doi:10.2307/2374050
[20] Jacquet, H; Shalika, J, The Whittaker models of induced representations, Pac. J. Math., 109, 107-120, (1983) · Zbl 0535.22017 · doi:10.2140/pjm.1983.109.107
[21] Langlands, R.P.: Automorphic representations, Shimura varieties, and motives. Ein Märchen. In: Proc. Sympos. Pure Math., Vol. XXXIII, part II, AMS, Providence, R.I., pp. 205-246 (1979) · Zbl 1309.11044
[22] Mahnkopf, J, Cohomology of arithmetic groups, parabolic subgroups and the special values of automorphic \(L\)-functions on \(GL(n)\), J. Inst. Math. Jussieu, 4, 553-637, (2005) · Zbl 1086.14019 · doi:10.1017/S1474748005000186
[23] Mahnkopf, J, Modular symbols and values of \(L\)-functions on \(GL_3\), J. Reine Angew. Math., 497, 91-112, (1998) · Zbl 1068.11034
[24] Mœglin, C; Waldspurger, J-L, Le spectre Résiduel de \(GL(n)\), Ann. Sci. de l’ENS, 22, 605-674, (1989) · Zbl 0696.10023
[25] Raghuram, A, Critical values of Rankin-Selberg \(L\)-functions for \(GL_{n}× GL_{n-1}\) and the symmetric cube \(L\)-functions for \(GL_2\), Forum Math., 28, 457-489, (2016) · Zbl 1417.11082 · doi:10.1515/forum-2014-0043
[26] Raghuram, A, On the special values of certain Rankin-Selberg \(L\)-functions and applications to odd symmetric power \(L\)-functions of modular forms, Int. Math. Res. Not., 2, 334-372, (2010) · Zbl 1221.11128 · doi:10.1093/imrn/rnp127
[27] Raghuram, A., Shahidi, F.: On certain period relations for cusp forms on \({{\rm GL}}_n\). Int. Math. Res. Not. (2008). https://doi.org/10.1093/imrn/rnn077 · Zbl 1170.11009
[28] Schwermer, J.: Kohomologie arithmetisch definierter Gruppen und Eisensteinreihen, Lecture Notes in Mathematics, vol. 988. Springer (1983) · Zbl 0506.22015
[29] Shahidi, F.: Eisenstein series and Automorphic \(L\)-functions, Colloquium publications 58, AMS (2010) · Zbl 1215.11054
[30] Shalika, JA, The multiplicity one theorem for \(GL_n\), Ann. Math., 100, 171-193, (1974) · Zbl 0316.12010 · doi:10.2307/1971071
[31] Vogan, DA, The unitary dual of \(GL(n)\) over an Archimedean field, Invent. Math., 83, 449-505, (1986) · Zbl 0598.22008 · doi:10.1007/BF01394418
[32] Waldspurger, J-L, Quelques propriétés arithmétiques de certaines formes automorphes sur GL(2), Comp. Math., 54, 121-171, (1985) · Zbl 0567.10022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.