×

On an adaptive monotonic convection-diffusion flux discretization scheme. (English) Zbl 0964.76044

From the summary: The paper concerns numerical investigation of a two-dimensional steady convection-diffusion scalar equation. Specific attention is given to resolving spurious oscillations in a confined region of high gradient. In smooth regions, a high-order accurate solution is desired, while in regions containing a sharp gradient, the strategy of applying a monotonic capturing scheme is preferred. We model fluxes by means of a finite element model which has spaces spanned by Legendre polynomials. The propensity to yield an irreducible diagonal-dominant stiffness matrix is an attribute of this finite element flux discretization scheme. By conducting a modified equation analysis, we confirm the consistency of the scheme. Both the stability and monotonicity of the solutions are also addressed. A guide for judging whether the stiffness matrix can yield a monotonic solution is rooted in the theory of the \(M\)-matrix. This monotonicity study provides us with greater numerical insight into the importance of the chosen Péclet number. Beyond its critical value, oscillatory solutions are present in the flow. This monotonic region is, however, fairly restricted.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76R99 Diffusion and convection
Full Text: DOI

References:

[1] Harten, A., High resolution schemes for hyperbolic conservation law, J. Comput. Phys., 49, 357-393 (1993) · Zbl 0565.65050
[2] Boris, J. P.; Book, D. L., Flux corrected transport I SHASTA, A fluid transport algorithm that works. A fluid transport algorithm that works, J.Comput. Phys., 11, 38-69 (1973) · Zbl 0251.76004
[3] Zalesak, S. T., Fully multidimensional flux-corrected transport algorithm for fluids, J. Comput. Phys., 31, 335-362 (1979) · Zbl 0416.76002
[4] Chapman, M., FARM-nonlinear damping algorithm for the continuity equation, J. Comput. Phys., 44, 84-103 (1981) · Zbl 0471.76024
[5] Sheu, T. W.H.; Lee, S. M.; Yang, K. O.; Chiou, B. J.Y., A non-oscillating solution technique for skew and QUICK-family schemes, Comput. Mech., 8, 365-382 (1991) · Zbl 0745.76054
[6] Sheu, T. W.H.; Huang, P. G.Y.; Wang, M. M.T., A discontinuity SUPG formulation using quadratic elements, (Hirsch, Ch., Proceedings of the First European Computational Fluid Dynamics Conference, Vol. 1 (1992), Elsevier: Elsevier Los Angeles, CA), 125-129
[7] Leonard, B. P., Simple high-accuracy resolution program of convective modeling of discontinuity, Int. J. Numer. Methods Fluids, 8, 1291-1318 (1988) · Zbl 0667.76125
[8] Leonard, B. P.; Lock, A. P.; MacVean, M. K., The NIRVANA scheme applied to one-dimensional advection, Int. J. Numer. Methods Heat Fluid Flow, 5, 341-377 (1995) · Zbl 0849.76063
[9] Leonard, B. P.; Lock, A. P.; MacVean, M. K., Extend numerical integration for genuinely multidimensional advective transport insuring conservation, Numerical Methods in Laminar and Turbulent Flow ’95, IX, 1-21 (1995), (Part I)
[10] Gaskell, P. H.; Lau, A. K.C., Curvature compensated convective transport: SMART a new boundedness preserving transport algorithm, Int. J. Numer. Methods Fluids, 8, 617-641 (1988) · Zbl 0668.76118
[11] Löhner, R.; Morgan, K.; Peraire, J.; Vahdati, M., Finite element flux-corrected transport (FEM-FCT) for the Euler and Navier-Stokes equations, Int. J. Numer. Methods Fluids, 7, 1093-1109 (1987) · Zbl 0633.76070
[12] Sheu, T. W.H.; Fang, C. C., A flux corrected transport finite element method for multi-dimensional gas dynamics, (Proceedings of the Second European Computational Fluid Dynamics Conference (ECCOMAS) (1994), Elsevier), 170-175
[13] Sheu, T. W.H.; Fang, C. C., A high resolution finite element analysis for nonlinear acoustic wave propagation, J. Comput. Acoust., 2, 1, 29-51 (1994) · Zbl 1360.76156
[14] Sheu, T. W.H.; Fang, C. C., A numerical study of nonlinear propagation of disturbances in two-dimensions, J. Comput. Acoust., 4, 3, 291-319 (1996)
[15] Spekreijse, S., Multigrid solution of monotone second-order discretizations of hyperbolic conservation laws, Math. Comput., 49, 135-155 (1987) · Zbl 0654.65066
[16] Rice, J. G.; Schnipke, R. J., A monotone streamline upwind finite element methods for convection-dominated flows, Comput. Methods Appl. Mech. Engrg., 47, 313-327 (1984) · Zbl 0553.76073
[17] Hughes, T. J.R.; Brooks, A., A multi-dimensional upwind scheme with no crosswind diffusion, (Hughes, T. J.R., Finite Element Methods for Convection Dominated Flows. Finite Element Methods for Convection Dominated Flows, AMD, 34 (1979), ASME), 19-35 · Zbl 0423.76067
[18] Meis, T.; Marcowitz, U., Numerical solution of partial differential equations, (Applied Mathematical Science, Vol. 32 (1981), Springer-Verlag: Springer-Verlag New York) · Zbl 0446.65045
[19] Ikeda, T., Maximal principle infinite element models for convection-diffusion phenomena, (Lecture Notes in Numerical and Applied Analysis, Vol. 4 (1983), North-Holland) · Zbl 0508.65049
[20] Ahu, M.; Telias, M., Petrov-Galerkin scheme for the steady state convection diffusion equation, Finite Elements Water Res., 2/3 (1982)
[21] Varga, R. S., Matrix Iterative Analysis (1982), Prentice-Hall: Prentice-Hall Kinokuniya, Amsterdam, Tokyo · Zbl 0133.08602
[22] Hill, D. L.; Baskharone, E. A., A monotone streamline upwind method for quadratic finite elements, Int. J. Numer. Methods Fluids, 17, 463-475 (1983) · Zbl 0784.76051
[23] Galeão, A. C.; Dutra do Carmo, E. G., A consistent approximate upwind Petrov-Galerkin formulation for convection-dominated problems, Comput. Methods Appl. Mech. Engrg., 68, 83-95 (1988) · Zbl 0626.76091
[24] Deconinck, H.; Pailléere, H.; Struijs, R.; Roe, P. L., Multidimensional upwind schemes based on fluctuation-splitting for system of conservation laws, J. Comput. Mech., 11, 323-340 (1993) · Zbl 0771.76048
[25] Barrett, J. W.; Morton, K. W., Approximate symmetrization and Petrov-Galerkin methods for diffusion-convection problems, Comput. Methods Appl. Mech. Engrg., 45, 97-122 (1984) · Zbl 0562.76086
[26] Sheu, T. W.H.; Wang, M. T.; Tsai, S. F., A Petrov-Galerkin finite element model for analyzing incompressible flows at high Reynolds numbers, Int. J. Comput. Fluid Dyn., 5, 213-230 (1995)
[27] Sheu, T. W.H.; Tsai, S. F.; Wang, M. M.T., A monotone multidimensional upwind finite element method for advection-diffusion problems, Int. J. Numer. Heat Trans., Part B: Fundamentals, 29, 325-344 (1996)
[28] Sheu, T. W.H.; Tsai, S. F.; Wang, M. M.T., A monotone finite element method with test space of Legendre polynomials, Comput. Methods Appl. Mech. Engrg., 143, 349-372 (1997) · Zbl 0898.76067
[29] Warming, R. F.; Hyett, B. J., The modified equation approach to the stability and accuracy analysis of finite-difference method, J. Comput. Phys., 14, 159-179 (1974) · Zbl 0291.65023
[30] Celia, M. A.; Cray, W. G., Numerical Methods for Differential Equations (1992), Prentice-Hall International Inc.: Prentice-Hall International Inc. London · Zbl 0753.65073
[31] L. Demkowicz and J.T. Oden, A Review of Local Refinement Techniques and the Corresponding Data Structures in h-type Adaptive Finite Element Methods, TICOM Report 88-02, The Texas Institute for Computational Mechanics, The University of Texas at Austin, Texas 78712.; L. Demkowicz and J.T. Oden, A Review of Local Refinement Techniques and the Corresponding Data Structures in h-type Adaptive Finite Element Methods, TICOM Report 88-02, The Texas Institute for Computational Mechanics, The University of Texas at Austin, Texas 78712.
[32] Devloo, P. R.; Oden, J. T.; Strouboulis, T., Implementation of an adaptive refinement technique for the SUPG algorithm, Comput. Methods Appl. Mech. Engrg., 61, 339-358 (1987) · Zbl 0596.73066
[33] Demkowicz, L.; Oden, J. T.; Rachowicz, W.; Hardy, O., Toward a universal h-p adaptive finite element strategy. Part I, Constrained approximation and data structure, Comput. Methods Appl. Mech. Engrg., 77, 79-112 (1989) · Zbl 0723.73074
[34] Huang, C. Y.; Tworzydlo, W. W.; Cullen, C.; Vadaketh; Bass, J. M.; Oden, J. T., Adaptive finite element methods for accurate prediction of internal flows in solid rocket booster, (Final Report to NASA Marshall Space Flight Center, Contract No. NAS8-37682 (March 1991), The Computational Mechanics Company)
[35] Huang, C. Y.; Lee, H. W.; Wang, S. J., Post-processing of a given velocity field—streamlines on adapted unstructured mesh, (Proceedings of the 12th National Conference of the CSME. Proceedings of the 12th National Conference of the CSME, National Chung-Chen University, Chia-Yi, Taiwan, R.O.C. (Nov. 1995))
[36] Devloo, P. R., A three-dimensional adaptive finite element strategy, Comput. Struct., 38, 121-130 (1991) · Zbl 0825.73695
[37] Tworzydlo, W. W.; Oden, J. T.; Thornton, E. A., Adaptive implicit/explicit finite element method for compressible viscous flows, Comput. Methods Appl. Mech. Engrg., 95, 397-440 (1992) · Zbl 0748.76076
[38] Tworzydlo, W. W.; Huang, C. Y.; Oden, J. T., Adaptive implicit/explicit finite element methods for axisymmetric viscous turbulent flows with moving boundaries, Comput. Methods Appl. Mech. Engrg., 97, 245-288 (1992) · Zbl 0762.76060
[39] Griffiths, D. F.; Mitchell, A. R., Infinite element for convection dominated flows, (Hughes, T. J.R., AMD, 34 (1979), ASME: ASME Austin, Texas), 91-104 · Zbl 0423.76069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.