×

Modular data and Verlinde formulae for fractional level WZW models I. (English) Zbl 1262.81157

Summary: The modular properties of fractional level \(\widehat{\mathfrak sl}(2)\)-theories and, in particular, the application of the Verlinde formula, have a long and checkered history in conformal field theory. Recent advances in logarithmic conformal field theory have led to the realisation that problems with fractional level models stem from trying to build the theory with an insufficiently rich category of representations. In particular, the appearance of negative fusion coefficients for admissible highest weight representations is now completely understood. Here, the modular story for certain fractional level theories is completed. Modular transformations are derived for the complete set of admissible irreducible representations when the level is \(k= - \frac{1}{2}\) or \(k= - \frac{4}{3}\). The S-matrix data and Verlinde formula are then checked against the known fusion rules with complete agreement. Finally, an infinite set of modular invariant partition functions is constructed in each case.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations

References:

[1] Ridout, D., \( \hat{sl}(2)_{- 1 / 2} \): A case study, Nucl. Phys. B, 814, 485-521 (2009) · Zbl 1194.81223
[2] Ridout, D., \( \hat{sl}(2)_{- 1 / 2}\) and the triplet model, Nucl. Phys. B, 835, 314-342 (2010) · Zbl 1204.81157
[3] Ridout, D., Fusion in fractional level \(\hat{sl}(2)\)-theories with \(k = - \frac{1}{2} \), Nucl. Phys. B, 848, 216-250 (2011) · Zbl 1215.81102
[4] Kac, V.; Wakimoto, M., Modular invariant representations of infinite-dimensional Lie algebras and superalgebras, Proc. Natl. Acad. Sci. USA, 85, 4956-4960 (1988) · Zbl 0652.17010
[5] Koh, I.; Sorba, P., Fusion rules and (sub)modular invariant partition functions in nonunitary theories, Phys. Lett. B, 215, 723-729 (1988)
[6] Bernard, D.; Felder, G., Fock representations and BRST cohomology in \(SL(2)\) current algebra, Comm. Math. Phys., 127, 145-168 (1990) · Zbl 0703.17013
[7] Mathieu, P.; Walton, M., Fractional level Kac-Moody algebras and nonunitary coset conformal field theories, Progr. Theoret. Phys. Suppl., 102, 229-254 (1990) · Zbl 0784.17035
[8] Kausch, H., Extended conformal algebras generated by a multiplet of primary fields, Phys. Lett. B, 259, 448-455 (1991)
[9] Kausch, H., Curiosities at \(c = - 2\)
[10] Gaberdiel, M.; Kausch, H., A rational logarithmic conformal field theory, Phys. Lett. B, 386, 131-137 (1996)
[11] Rohsiepe, F., On reducible but indecomposable representations of the Virasoro algebra
[12] Kytölä, K.; Ridout, D., On staggered indecomposable Virasoro modules, J. Math. Phys., 50, 123503 (2009) · Zbl 1373.81234
[13] Gaberdiel, M., Fusion rules and logarithmic representations of a WZW model at fractional level, Nucl. Phys. B, 618, 407-436 (2001) · Zbl 0989.81063
[14] Adamović, D., A construction of admissible \(A_1^{(1)}\)-modules of level \(- \frac{4}{3} \), J. Pure Appl. Algebra, 196, 119-134 (2005) · Zbl 1066.17016
[15] Adamović, D.; Milas, A., Lattice construction of logarithmic modules for certain vertex algebras, Selecta Math. (N.S.), 15, 535-561 (2009) · Zbl 1235.17019
[16] T. Creutzig, D. Ridout, Modular data and Verlinde formulae for fractional-level WZW models II, in preparation.; T. Creutzig, D. Ridout, Modular data and Verlinde formulae for fractional-level WZW models II, in preparation. · Zbl 1282.81158
[17] A. Kent, Infinite-dimensional algebras and the conformal bootstrap, PhD thesis, Cambridge University, Department of Applied Mathematics and Theoretical Physics, 1986.; A. Kent, Infinite-dimensional algebras and the conformal bootstrap, PhD thesis, Cambridge University, Department of Applied Mathematics and Theoretical Physics, 1986.
[18] Goddard, P.; Kent, A.; Olive, D., Unitary representations of the Virasoro and super-Virasoro algebras, Comm. Math. Phys., 103, 105-119 (1986) · Zbl 0588.17014
[19] Kac, V.; Wakimoto, M., Modular and conformal invariance constraints in representation theory of affine algebras, Adv. Math., 70, 156-236 (1988) · Zbl 0661.17016
[20] Verlinde, E., Fusion rules and modular transformations in 2D conformal field theory, Nucl. Phys. B, 300, 360-376 (1988) · Zbl 1180.81120
[21] Awata, H.; Yamada, Y., Fusion rules for the fractional level \(\hat{sl(2)}\) algebra, Mod. Phys. Lett. A, 7, 1185-1196 (1992) · Zbl 1021.81529
[22] Feigin, B.; Malikov, F., Fusion algebra at a rational level and cohomology of nilpotent subalgebras of supersymmetric \(\hat{sl}_2\), Lett. Math. Phys., 31, 315-326 (1994) · Zbl 0992.81033
[23] Andreev, O., Operator algebra of the SL(2) conformal field theories, Phys. Lett. B, 363, 166-172 (1995)
[24] Dong, C.; Li, H.; Mason, G., Vertex operator algebras associated to admissible representations of \(\hat{sl}_2\), Comm. Math. Phys., 184, 65-93 (1997) · Zbl 0873.46035
[25] Petersen, J.; Rasmussen, J.; Yu, M., Fusion, crossing and monodromy in conformal field theory based on \(SL(2)\) current algebra with fractional level, Nucl. Phys. B, 481, 577-624 (1996) · Zbl 0974.17518
[26] Furlan, P.; Ganchev, A.; Petkova, V., \(A_1^{(1)}\) admissible representations — Fusion transformations and local correlators, Nucl. Phys. B, 491, 635-658 (1997) · Zbl 0895.17028
[27] Ramgoolam, S., New modular Hopf algebras related to rational \(k\hat{sl}(2)\)
[28] Di Francesco, P.; Mathieu, P.; Sénéchal, D., Conformal Field Theory, Graduate Texts in Contemporary Physics (1997), Springer-Verlag: Springer-Verlag New York · Zbl 0869.53052
[29] Nahm, W., Quasirational fusion products, Int. J. Mod. Phys. B, 8, 3693-3702 (1994) · Zbl 1264.81247
[30] Gaberdiel, M.; Kausch, H., Indecomposable fusion products, Nucl. Phys. B, 477, 293-318 (1996) · Zbl 1485.81053
[31] Lesage, F.; Mathieu, P.; Rasmussen, J.; Saleur, H., The \(\hat{su}(2)_{- 1 / 2}\) WZW model and the βγ system, Nucl. Phys. B, 647, 363-403 (2002) · Zbl 1001.81050
[32] Lesage, F.; Mathieu, P.; Rasmussen, J.; Saleur, H., Logarithmic lift of the \(\hat{su}(2)_{- 1 / 2}\) model, Nucl. Phys. B, 686, 313-346 (2004) · Zbl 1107.81328
[33] Maldacena, J.; Ooguri, H., Strings in \(AdS_3\) and the \(SL(2, R)\) WZW model. I: The spectrum, J. Math. Phys., 42, 2929-2960 (2001) · Zbl 1036.81033
[34] Baron, W.; Núñez, C., On modular properties of the \(AdS_3\) CFT, Phys. Rev. D, 83, 106010 (2011)
[35] Creutzig, T.; Quella, T.; Schomerus, V., Branes in the \(GL(1 | 1)\) WZNW model, Nucl. Phys. B, 792, 257-283 (2008) · Zbl 1146.81037
[36] Creutzig, T.; Ridout, D., Relating the archetypes of logarithmic conformal field theory · Zbl 1282.81157
[37] Alfes, C.; Creutzig, T., The mock modular data of a family of superalgebras · Zbl 1294.11055
[38] Creutzig, T.; Ridout, D., W-algebras extending \(\hat{gl}(1 | 1)\) · Zbl 1287.81055
[39] T. Creutzig, D. Ridout, S. Wood, in preparation.; T. Creutzig, D. Ridout, S. Wood, in preparation.
[40] Gaberdiel, M.; Kausch, H., A local logarithmic conformal field theory, Nucl. Phys. B, 538, 631-658 (1999) · Zbl 0948.81632
[41] Fuchs, J.; Hwang, S.; Semikhatov, A.; Tipunin, I. Yu., Nonsemisimple fusion algebras and the Verlinde formula, Comm. Math. Phys., 247, 713-742 (2004) · Zbl 1063.81062
[42] Feigin, B.; Gainutdinov, A.; Semikhatov, A.; Tipunin, I. Yu., Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center, Comm. Math. Phys., 065, 47-93 (2006) · Zbl 1107.81044
[43] Pearce, P.; Rasmussen, J.; Ruelle, P., Grothendieck ring and Verlinde formula for the W-extended logarithmic minimal model \(WLM(1, p)\), J. Phys. A, 43, 045211 (2010) · Zbl 1186.81106
[44] Gaberdiel, M.; Runkel, I.; Wood, S., A modular invariant bulk theory for the \(c = 0\) triplet model, J. Phys. A, 44, 015204 (2011) · Zbl 1205.81123
[45] Adamović, D.; Milas, A., Vertex operator algebras associated to modular invariant representations of \(A_1^{(1)}\), Math. Res. Lett., 2, 563-575 (1995) · Zbl 0848.17033
[46] Feigin, B.; Semikhatov, A.; Tipunin, I. Yu., Equivalence between chain categories of representations of affine \(sl(2)\) and \(N = 2\) superconformal algebras, J. Math. Phys., 39, 3865-3905 (1998) · Zbl 0935.17011
[47] Kac, V., Characters of typical representations of classical Lie superalgebras, Comm. Algebra, 5, 889-897 (1977) · Zbl 0359.17010
[48] Kazhdan, D.; Lusztig, G., Tensor structures arising from affine Lie algebras. IV, J. Amer. Math. Soc., 7, 383-453 (1994) · Zbl 0802.17008
[49] Tsuchiya, A.; Wood, S., The tensor structure on the representation category of the \(W_p\) triplet algebra · Zbl 1290.81143
[50] Flohr, M.; Knuth, H., On Verlinde-like formulas in \(c(p, 1)\) logarithmic conformal field theories
[51] Gaberdiel, M.; Runkel, I., From boundary to bulk in logarithmic CFT, J. Phys. A, 41, 075402 (2008) · Zbl 1134.81044
[52] Semikhatov, A., A note on the logarithmic \((p, p^\prime)\) fusion
[53] Rozansky, L.; Saleur, H., \(S\) and \(T\) matrices for the super \(U(1, 1)\) WZW model. Application to surgery and 3-manifolds invariants based on the Alexander Conway polynomial, Nucl. Phys. B, 389, 365-423 (1993)
[54] Saleur, H.; Schomerus, V., The \(GL(1 | 1)\) WZW model: From supergeometry to logarithmic CFT, Nucl. Phys. B, 734, 221-245 (2006) · Zbl 1192.81185
[55] Saleur, H.; Schomerus, V., On the \(SU(2 | 1)\) WZW model and its statistical mechanics applications, Nucl. Phys. B, 775, 312-340 (2007) · Zbl 1119.82014
[56] Mathieu, P.; Ridout, D., The extended algebra of the \(SU(2)\) Wess-Zumino-Witten models, Nucl. Phys. B, 765, 201-239 (2007) · Zbl 1116.81061
[57] Mathieu, P.; Ridout, D., The extended algebra of the minimal models, Nucl. Phys. B, 776, 365-404 (2007) · Zbl 1200.81134
[58] Flohr, M., On modular invariant partition functions of conformal field theories with logarithmic operators, Int. J. Mod. Phys. A, 11, 4147-4172 (1996) · Zbl 1044.81713
[59] Gainutdinov, A.; Tipunin, I. Yu., Radford, Drinfeld and Cardy boundary states in \((1, p)\) logarithmic conformal field models, J. Phys. A, 42, 315207 (2009) · Zbl 1177.81068
[60] Semikhatov, A.; Sirota, V., Embedding diagrams of \(N = 2\) Verma modules and relaxed \(\hat{s l}(2)\) Verma modules
[61] Kac, V.; Wakimoto, M., Integrable highest weight modules over affine superalgebras and number theory, Progr. Math., 123, 415-456 (1994) · Zbl 0854.17028
[62] Mathieu, P.; Ridout, D., Logarithmic \(M(2, p)\) minimal models, their logarithmic couplings, and duality, Nucl. Phys. B, 801, 268-295 (2008) · Zbl 1189.82053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.