×

The extended algebra of the \(\text SU(2)\) Wess-Zumino-Witten models. (English) Zbl 1116.81061

Summary: The Wess-Zumino-Witten model defined on the group \(\text{SU}(2)\) has a unique (non-trivial) simple current of conformal dimension \(k/4\) for each level \(k\). The extended algebra defined by this simple current is carefully constructed in terms of generalised commutation relations, and the corresponding representation theory is investigated. This extended algebra approach is proven to realise a faithful (“free-field-type”) representation of the \(\text{SU}(2)\) model. Subtleties in the formulation of the extended theory are illustrated throughout by the \(k=1\), 2 and 4 models. For the first two cases, bases for the modules of the extended theory are given and rigorously justified.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81U15 Exactly and quasi-solvable systems arising in quantum theory

Software:

Mathematica

References:

[1] Knizhnik, V.; Zamolodchikov, A., Current algebra and Wess-Zumino model in two dimensions, Nucl. Phys. B, 247, 83-103 (1984) · Zbl 0661.17020
[2] Witten, E., Non-Abelian bosonization in two dimensions, Commun. Math. Phys., 92, 455-472 (1984) · Zbl 0536.58012
[3] Gepner, D.; Witten, E., String theory on group manifolds, Nucl. Phys. B, 278, 493-549 (1986)
[4] Felder, G.; Gawȩdzki, K.; Kupiainen, A., The spectrum of Wess-Zumino-Witten models, Nucl. Phys. B, 299, 355-366 (1988) · Zbl 0642.22005
[5] Di Francesco, P.; Mathieu, P.; Sénéchal, D., Conformal Field Theory, Graduate Texts in Contemporary Physics (1997), Springer-Verlag: Springer-Verlag New York · Zbl 0869.53052
[6] Bernard, D.; Pasquier, V.; Serban, D., Spinons in conformal field theory, Nucl. Phys. B, 428, 612-628 (1994) · Zbl 1049.81535
[7] Bouwknegt, P.; Ludwig, A.; Schoutens, K., Spinon bases, Yangian symmetry and fermionic representations of Virasoro characters in conformal field theory, Phys. Lett. B, 338, 448-456 (1994)
[8] Bouwknegt, P.; Ludwig, A.; Schoutens, K., Spinon basis for higher level \(SU(2)\) WZW models, Phys. Lett. B, 359, 304-312 (1995)
[9] Feigin, B.; Jimbo, M.; Miwa, T.; Mukhin, E.; Takeyama, Y., A monomial basis for the Virasoro minimal series \(M(p, p^\prime)\): The case \(1 < p^\prime / p < 2\), Commun. Math. Phys., 257, 395-423 (2005) · Zbl 1135.17303
[10] Jacob, P.; Mathieu, P., A quasi-particle description of the \(M(3, p)\) models, Nucl. Phys. B, 733, 205-232 (2006) · Zbl 1119.81061
[11] Jacob, P.; Mathieu, P., Embedding of bases: From the \(M(2, 2 \kappa + 1)\) to the \(M(3, 4 \kappa + 2 - \delta)\) models, Phys. Lett. B, 635, 350-354 (2006) · Zbl 1247.81426
[12] P. Mathieu, D. Ridout, The extended algebra of the minimal models, in preparation; P. Mathieu, D. Ridout, The extended algebra of the minimal models, in preparation · Zbl 1200.81134
[13] Goddard, P.; Olive, D., Kac-Moody algebras, conformal symmetry and critical exponents, Nucl. Phys. B, 257, 226-252 (1985) · Zbl 0661.17014
[14] Bais, F.; Taormina, A., Accidental degeneracies in string compactification, Phys. Lett. B, 181, 87-90 (1986)
[15] P. Mathieu, D. Ridout, Characters of the extended algebra of the \(\mathit{SU}(2)\); P. Mathieu, D. Ridout, Characters of the extended algebra of the \(\mathit{SU}(2)\) · Zbl 1116.81061
[16] Kac, V., Infinite-Dimensional Lie Algebras (1990), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0716.17022
[17] Thielemans, K., A Mathematica package for computing operator product expansions, Int. J. Mod. Phys. C, 2, 787-798 (1991), Package available at · Zbl 0940.81500
[18] Andrews, G., The Theory of Partitions, (Encyclopedia of Mathematics and its Applications, vol. 2 (1976), Addison-Wesley: Addison-Wesley Reading) · Zbl 0371.10001
[19] Kedem, R.; McCoy, B.; Melzer, E., The sums of Rogers, Schur and Ramanujan and the Bose-Fermi correspondence in \((1 + 1)\)-dimensional quantum field theory, (Bouwknegt, P.; etal., Recent Progress in Statistical Mechanics and Quantum Field Theory (1995), World Scientific: World Scientific New Jersey), 195-219
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.