×

Analysis of individual cell trajectories in lattice-gas cellular automaton models for migrating cell populations. (English) Zbl 1334.92063

Summary: Collective dynamics of migrating cell populations drive key processes in tissue formation and maintenance under normal and diseased conditions. Collective cell behavior at the tissue level is typically characterized by considering cell density patterns such as clusters and moving cell fronts. However, there are also important observables of collective dynamics related to individual cell behavior. In particular, individual cell trajectories are footprints of emergent behavior in populations of migrating cells. Lattice-gas cellular automata (LGCA) have proven successful to model and analyze collective behavior arising from interactions of migrating cells. There are well-established methods to analyze cell density patterns in LGCA models. Although LGCA dynamics are defined by cell-based rules, individual cells are not distinguished. Therefore, individual cell trajectories cannot be analyzed in LGCA so far. Here, we extend the classical LGCA framework to allow labeling and tracking of individual cells. We consider cell number conserving LGCA models of migrating cell populations where cell interactions are regulated by local cell density and derive stochastic differential equations approximating individual cell trajectories in LGCA. This result allows the prediction of complex individual cell trajectories emerging in LGCA models and is a basis for model-experiment comparisons at the individual cell level.

MSC:

92C17 Cell movement (chemotaxis, etc.)
Full Text: DOI

References:

[1] Alarcón T, Byrne HM, Maini PK (2003) A cellular automaton model for tumour growth in inhomogeneous environment. J Theor Biol 225(2):257-274 · Zbl 1464.92060 · doi:10.1016/S0022-5193(03)00244-3
[2] Arratia R (1983) The motion of a tagged particle in the simple symmetric exclusion system on z. Ann Prob 11:362-373 · Zbl 0515.60097 · doi:10.1214/aop/1176993602
[3] Badoual M, Deroulers C, Aubert M, Grammaticos B (2010) Modelling intercellular communication and its effects on tumour invasion. Phys Biol 7(4):046013 · doi:10.1088/1478-3975/7/4/046013
[4] Bergman AJ, Zygourakis K (1999) Migration of lymphocytes on fibronectin-coated surfaces: temporal evolution of migratory parameters. Biomaterials 20(23):2235-2244 · doi:10.1016/S0142-9612(99)00154-4
[5] Binder BJ, Landman KA, Newgreen DF, Simkin JE, Takahashi Y, Zhang D (2012) Spatial analysis of multi-species exclusion processes: application to neural crest cell migration in the embryonic gut. Bull Math Biol 74(2):474-490 · Zbl 1237.92007 · doi:10.1007/s11538-011-9703-z
[6] Bloomfield JM, Sherratt JA, Painter KJ, Landini G (2010) Cellular automata and integrodifferential equation models for cell renewal in mosaic tissues. J R Soc Interface 7(52):1525-1535 · doi:10.1098/rsif.2010.0071
[7] Böttger K, Hatzikirou H, Chauviere A, Deutsch A (2012) Investigation of the migration/proliferation dichotomy and its impact on avascular glioma invasion. Math Model Nat Phenom 7(1):105-135 · Zbl 1241.92036 · doi:10.1051/mmnp/20127106
[8] Böttger K, Hatzikirou H, Voss-Böhme A, Cavalcanti-Adam EA, Herrero MA, Deutsch A (2015) Emerging allee effect in tumor growth. Plos Comput Biol (in press)
[9] Bryant DM, Mostov KE (2008) From cells to organs: building polarized tissue. Nature Rev Mol Cell Biol 9:887-901 · doi:10.1038/nrm2523
[10] Bussemaker HJ, Deutsch A, Geigant E (1997) Mean-field analysis of a dynamical phase transition in a cellular automaton model for collective motion. Phys Rev Lett 78:5018-5021 · doi:10.1103/PhysRevLett.78.5018
[11] Capasso V, Bakstein D (2012) An introduction to continuous-time stochastic processes. Birkhauser, Switzerland · Zbl 1261.60001 · doi:10.1007/978-0-8176-8346-7
[12] Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9(6):653-660 · doi:10.1038/nm0603-653
[13] Chopard B, Ouared R, Deutsch A, Hatzikirou H, Wolf-Gladrow DA (2010) Lattice-gas cellular automaton models for biology: from fluids to cells. Acta Biotheor 58(4):329-340 · doi:10.1007/s10441-010-9118-5
[14] Deutsch A, Dormann S (2005) Cellular automaton modeling of biological pattern formation. Birkhauser, Switzerland · Zbl 1154.37007
[15] Dormann S, Deutsch A (2002) Modeling of self-organized avascular tumor growth with a hybrid cellular automaton. Silico Biol 2(3):393-406
[16] Dormann S, Deutsch A, Lawniczak AT (2001) Fourier analysis of turing-like pattern formation in cellular automaton models. Future Gener Comp Sy 17(7):901-909 · Zbl 1050.68101 · doi:10.1016/S0167-739X(00)00068-6
[17] Drasdo D, Höhme S (2005) A single-cell-based model of tumor growth in vitro: monolayers and spheroids. Phys Biol 2(3):133 · doi:10.1088/1478-3975/2/3/001
[18] Drasdo D, Kree R, McCaskill JS (1995) Monte carlo approach to tissue-cell populations. Phys Rev E 52(6):6635-6656 · doi:10.1103/PhysRevE.52.6635
[19] Ermentrout GB, Edelstein-Keshet L (1993) Cellular automata approaches to biological modeling. J Theor Biol 160(1):97-133 · doi:10.1006/jtbi.1993.1007
[20] Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10:445-457 · doi:10.1038/nrm2720
[21] Galle J, Hoffmann M, Aust G (2009) From single cells to tissue architecturea bottom-up approach to modelling the spatio-temporal organisation of complex multi-cellular systems. J Math Biol 58:261-283 · Zbl 1161.92021 · doi:10.1007/s00285-008-0172-4
[22] Gardiner CW (1998) Handbook of stochastic methods. Springer, New York · Zbl 0934.60003
[23] Glazier JA, Graner F (1993) Simulation of the differential adhesion driven rearrangement of biological cells. Phys Rev E 47(3):2128-2154 · doi:10.1103/PhysRevE.47.2128
[24] Graner F, Glazier JA (1992) Simulation of biological cell sorting using a two-dimensional extended potts model. Phys Rev Lett 69:2013-2016 · doi:10.1103/PhysRevLett.69.2013
[25] Hardy J, De Pazzis O, Pomeau Y (1976) Molecular dynamics of a classical lattice gas: transport properties and time correlation functions. Phys Rev A 13(5):1949-1962 · doi:10.1103/PhysRevA.13.1949
[26] Harris TE (1965) Diffusion with collisions between particles. J App Prob 2:323-338 · Zbl 0139.34804 · doi:10.2307/3212197
[27] Hatzikirou H, Basanta D, Simon M, Schaller K, Deutsch A (2006) Go or grow: the key to the emergence of invasion in tumour progression? Math Med Biol 29(1):49-65 · Zbl 1234.92031 · doi:10.1093/imammb/dqq011
[28] Hatzikirou H, Böttger K, Deutsch A (2015) Model-based comparison of cell density-dependent cell migration strategies. Math Model Nat Phenom 10(1):94-107 · Zbl 1334.92056 · doi:10.1051/mmnp/201510105
[29] Hatzikirou H, Brusch L, Deutsch A, Schaller C, Simon M (2006) Characterization of travelling front behaviour in a lattice gas cellular automaton model of glioma invasion. Math Mod Meth Appl Sci 15:1779-1794 · Zbl 1077.92032 · doi:10.1142/S0218202505000960
[30] Hatzikirou H, Brusch L, Schaller C, Simon M, Deutsch A (2010) Prediction of traveling front behavior in a lattice-gas cellular automaton model for tumor invasion. Comput Math Appl 59(7):2326-2339 · Zbl 1193.76109 · doi:10.1016/j.camwa.2009.08.041
[31] Knapp DM, Tower TT, Tranquillo RT, Barocas VH (1999) Estimation of cell traction and migration in an isometric cell traction assay. AIChE J 45(12):2628-2640 · doi:10.1002/aic.690451219
[32] Liggett TM (1985) Interacting particle systems. Springer, New York · Zbl 0559.60078 · doi:10.1007/978-1-4613-8542-4
[33] Mente C, Prade I, Brusch L, Breier G, Deutsch A (2012) A lattice-gas cellular automaton model for in vitro sprouting angiogenesis. Acta Phys Pol B 5(1):99-115
[34] Merks RMH, Glazier JA (2005) A cell-centered approach to developmental biology. Phys A 352(1):113-130 · doi:10.1016/j.physa.2004.12.028
[35] Oelschläger K (1989) Many-particle systems and the continuum description of their dynamics · Zbl 0659.60134
[36] Pézeron G, Mourrain P, Courty S, Ghislain J, Becker TS, Rosa FM, David NB (2008) Live analysis of endodermal layer formation identifies random walk as a novel gastrulation movement. Curr Biol 18(4):276-281 · doi:10.1016/j.cub.2008.01.028
[37] Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9(4):265-273 · doi:10.1038/nrc2620
[38] Pomeau B, Hasslacher Y, Frisch U (1986) Lattice-gas automata for the Navier-stokes equation. Phys Rev Lett 56(14):1505-1509 · doi:10.1103/PhysRevLett.56.1505
[39] Rejniak KA, Anderson ARA (2011) Hybrid models of tumor growth. Wiley Interdiscip Rev Syst Biol Med 3(1):115-125 · doi:10.1002/wsbm.102
[40] Row RH, Maître J, Martin BL, Stockinger P, Heisenberg C, Kimelman D (2011) Completion of the epithelial to mesenchymal transition in zebrafish mesoderm requires spadetail. Dev Biol 354(1):102-110 · doi:10.1016/j.ydbio.2011.03.025
[41] Shreiber DI, Barocas VH, Tranquillo RT (2003) Temporal variations in cell migration and traction during fibroblast-mediated gel compaction. Biophys J 84(6):4102-4114 · doi:10.1016/S0006-3495(03)75135-2
[42] Simpson MJ, Landman KA, Hughes BD (2009) Pathlines in exclusion processes. Phys l Rev E 79(3):031920 · doi:10.1103/PhysRevE.79.031920
[43] Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12(8):895-904 · doi:10.1038/nm1469
[44] Voss-Böhme A, Deutsch A (2010) The cellular basis of cell sorting kinetics. J Theor Biol 263(4):419-436 · Zbl 1406.92066 · doi:10.1016/j.jtbi.2009.12.011
[45] Wolf-Gladrow DA (2000) Lattice-gas cellular automata and lattice Boltzmann models: an introduction. Springer, New York · Zbl 0999.82054 · doi:10.1007/b72010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.