×

Hypergeometric polynomials are optimal. (English) Zbl 1446.35086

Summary: With any integer convex polytope \(P \subset \mathbb{R}^n\) we associate a multivariate hypergeometric polynomial whose set of exponents is \(\mathbb{Z}^n \cap P.\) This polynomial is defined uniquely up to a constant multiple and satisfies a holonomic system of partial differential equations of Horn’s type. We prove that under certain nondegeneracy conditions any such polynomial is optimal in the sense of [M. Forsberg et al., Adv. Math. 151, No. 1, 45–70 (2000; Zbl 1002.32018)], i.e., that the topology of its amoeba [G. Mikhalkin, Ann. Math. (2) 151, No. 1, 309–326 (2000; Zbl 1073.14555)] is as complex as it could possibly be. Using this, we derive optimal properties of several classical families of multivariate hypergeometric polynomials.

MSC:

35P20 Asymptotic distributions of eigenvalues in context of PDEs
15A60 Norms of matrices, numerical range, applications of functional analysis to matrix theory
47B06 Riesz operators; eigenvalue distributions; approximation numbers, \(s\)-numbers, Kolmogorov numbers, entropy numbers, etc. of operators
47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)

References:

[1] Alexandersson, P.; Shapiro, B., Around a multivariate Schmidt-Spitzer theorem, Linear Algebra Appl., 446, 1, 356-368 (2014) · Zbl 1285.15011 · doi:10.1016/j.laa.2014.01.005
[2] Beukers, F., Algebraic A-hypergeometric functions, Invent. Math., 180, 3, 589-610 (2010) · Zbl 1251.33011 · doi:10.1007/s00222-010-0238-y
[3] Dominici, D.; Johnston, SJ; Jordaan, K., Real zeros of \(_2F_1\) hypergeometric polynomials, J. Comput. Appl. Math., 247, 152-161 (2013) · Zbl 1264.33006 · doi:10.1016/j.cam.2012.12.024
[4] Driver, KA; Johnston, SJ, Asymptotic zero distribution of a class of hypergeometric polynomials, Quaestiones Mathematicae, 30, 2, 219-230 (2007) · Zbl 1141.33001 · doi:10.2989/16073600709486195
[5] Dunkl, CF; Xu, Y., Orthogonal Polynomials of Several Variables (2014), Cambridge: Cambridge University Press, Cambridge · Zbl 1317.33001
[6] Erdelyi, A., Hypergeometric functions of two variables, Acta Math., 83, 131-164 (1950) · Zbl 0041.39402 · doi:10.1007/BF02392635
[7] Forsberg, M.; Passare, M.; Tsikh, AK, Laurent determinants and arrangements of hyperplane amoebas, Adv. Math., 151, 45-70 (2000) · Zbl 1002.32018 · doi:10.1006/aima.1999.1856
[8] Forsgård, J.; Matusevich, LF; Mehlhop, N.; de Wolff, T., Lopsided approximation of amoebas, Math. Comput., 88, 315, 485-500 (2018) · Zbl 1410.13019 · doi:10.1090/mcom/3323
[9] Gelfand I.M., Kapranov M.M., Zelevinsky A.V.: Discriminants, resultants and multidimensional determinants. Birkhäuser, (1994) · Zbl 0827.14036
[10] Gelfand, IM; Graev, MI; Retach, VS, General hypergeometric systems of equations and series of hypergeometric type, Russ. Math. Surv, 47, 4, 1-88 (1992) · Zbl 0798.33010 · doi:10.1070/RM1992v047n04ABEH000915
[11] Guillemin, V.; Sternberg, S., Convexity properties of the moment mapping, Invent. Math., 67, 3, 491-513 (1982) · Zbl 0503.58017 · doi:10.1007/BF01398933
[12] Klein, F., Über die Nullstellen der hypergeometrischen Reihe, (German), Math. Ann., 37, 4, 573-590 (1890) · JFM 22.0444.02 · doi:10.1007/BF01724773
[13] Mikhalkin, G., Real algebraic curves, the moment map and amoebas, Ann. Math., 151, 2, 309-326 (2000) · Zbl 1073.14555 · doi:10.2307/121119
[14] Nisse, M.; Sadykov, TM, Amoeba-shaped polyhedral complex of an algebraic hypersurface, J. Geom. Anal., 29, 2, 1356-1368 (2019) · Zbl 1423.32010 · doi:10.1007/s12220-018-0041-3
[15] Nørlund, NE, Hypergeometric functions, Acta Math., 94, 289-349 (1955) · Zbl 0067.29402 · doi:10.1007/BF02392494
[16] Passare, M.; Sadykov, TM; Tsikh, AK, Nonconfluent hypergeometric functions in several variables and their singularities, Compos. Math., 141, 3, 787-810 (2005) · Zbl 1080.33012 · doi:10.1112/S0010437X04001411
[17] Purbhoo, K., A Nullstellensatz for amoebas, Duke Math. J., 141, 3, 407-445 (2008) · Zbl 1233.14036 · doi:10.1215/00127094-2007-001
[18] Rullgård, H., Stratification des espaces de polynômes de Laurent et la structure de leurs amibes (French), Comptes Rendus de l’Academie des Sciences - Series I: Mathematics, 331, 5, 355-358 (2000) · Zbl 0965.32003
[19] Sadykov, TM, On a multidimensional system of hypergeometric differential equations, Sib. Math. J., 39, 986-997 (1998) · Zbl 0920.34034 · doi:10.1007/BF02672921
[20] Sadykov, TM, On the Horn system of partial differential equations and series of hypergeometric type, Math. Scand., 91, 127-149 (2002) · Zbl 1130.35323 · doi:10.7146/math.scand.a-14382
[21] Sadykov, TM; Tanabe, S., Maximally reducible monodromy of bivariate hypergeometric systems, Izv. Math., 80, 1, 221-262 (2016) · Zbl 1347.33036 · doi:10.1070/IM8211
[22] Theobald, T.; de Wolff, T., Amoebas of genus at most one, Adv. Math., 239, 190-213 (2013) · Zbl 1330.14090 · doi:10.1016/j.aim.2013.03.001
[23] Zharkov, I., Torus fibrations of Calabi-Yau hypersurfaces in toric varieties, Duke Math. J., 101, 2, 237-257 (2000) · Zbl 0957.14031 · doi:10.1215/S0012-7094-00-10124-X
[24] Zhou, J-R; Srivastava, HM; Wang, Z-G, Asymptotic distribution of the zeros of a family of hypergeometric polynomials, Proc. AMS, 140, 7, 2333-2346 (2012) · Zbl 1282.33009 · doi:10.1090/S0002-9939-2011-11117-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.