×

Algebraic \(A\)-hypergeometric functions. (English) Zbl 1251.33011

The author considers \(A\)-hypergeometric functions, where as usual \(A\subset \mathbb{Z}^r\), \(r\in \mathbb{N}\), consists of \(N\) vectors \(\mathbf{a}_1, \ldots, \mathbf{a}_N\) whose \(\mathbb{Z}\)-span equals \(\mathbb{Z}^r\) and for which there exists a linear form \(h\) on \(\mathbb{R}^r\) such that \(h(\mathbf{a}_i) = 1\), for all \(i = 1, \ldots, N\), and \(A\)-hypergeometric equations of the from \[ \square_{\mathbf{l}} \Phi = \prod_{l_i > 0} \partial_i^{l_i}\Phi - \prod_{l_i=0}\partial_i^{|l_i|}\Phi = 0, \] and \[ Z_i \Phi = \left(\sum_{j=1}^N a_{ij} v_j \partial_j - \alpha_i\right)\Phi = 0, \quad i = 1, \ldots, r. \] Here, \(\alpha\) is a vector of parameters in \(\mathbb{Q}^r\), \(a_{ij}\) are the components of vector \(\mathbf{a}_i\), and \(\mathbf{l} = (l_1, \ldots, l_N)\in L\subset \mathbb{Z}^N\) , where \(L\) denotes the lattice of relations such that \(\sum_{i=1}^N l_i \mathbf{a}_i = 0\).
The above system of equations is denoted by \(H_A(\alpha)\). The author requires the system \(H_A(\alpha)\) to satisfy one additional condition, namely that the \(\mathbb{R}_{\geq 0}\)-span of \(A\) intersected with \(\mathbb{Z}^r\) equals the \(\mathbb{Z}_{\geq 0}\)-span of \(A\). This condition ensures that the dimension of \(H_A(\alpha)\) equals the volume of the \(A\)-polytope \(Q(A)\).
A combinatorial criterion is formulated and proved to decide whether an \(A\)-hyperbolic system \(H_A(\alpha)\) has a full set of algebraic solutions or not. In the case of the one-dimensional setting of hypergeometric functions, this criterion generalizes the so-called interlacing condition.

MSC:

33C65 Appell, Horn and Lauricella functions
33C70 Other hypergeometric functions and integrals in several variables
13N10 Commutative rings of differential operators and their modules

References:

[1] Adolphson, A.: Hypergeometric functions and rings generated by monomials. Duke Math. J. 73, 269–290 (1994) · Zbl 0804.33013 · doi:10.1215/S0012-7094-94-07313-4
[2] Beazley Cohen, P., Wolfart, J.: Algebraic Appell-Lauricella functions. Analysis 12, 359–376 (1992) · Zbl 0761.33007
[3] Beukers, F., Heckman, G.: Monodromy for the hypergeometric function n F n. Invent. Math. 95, 325–354 (1989) · Zbl 0663.30044 · doi:10.1007/BF01393900
[4] Dwork, B.: Generalized Hypergeometric Functions. Oxford Mathematical Monographs. Oxford University Press, London (1990) · Zbl 0747.33001
[5] Dwork, B., Loeser, F.: Hypergeometric series. Jpn. J. Math. (N.S.) 19, 81–129 (1993) · Zbl 0796.12005
[6] Gelfand, I.M., Graev, M.I., Zelevinsky, A.V.: Holonomic systems of equations and series of hypergeometric type. Dokl. Akad. Nauk SSSR 295, 14–19 (1987) (in Russian)
[7] Gelfand, I.M., Zelevinsky, A.V., Kapranov, M.M.: Equations of hypergeometric type and Newton polytopes. Dokl. Akad. Nauk SSSR 300, 529–534 (1988) (in Russian)
[8] Gelfand, I.M., Zelevinsky, A.V., Kapranov, M.M.: Hypergeometric functions and toric varieties. Funkt. Anal. Prilozhen. 23, 12–26 (1989) (in Russian) · Zbl 0737.35116 · doi:10.1007/BF01078569
[9] Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Generalized Euler integrals and A-hypergeometric functions. Adv. Math. 84, 255–271 (1990) · Zbl 0741.33011 · doi:10.1016/0001-8708(90)90048-R
[10] Kato, M.: Appell’s F 4 with finite irreducible monodromy group. Kyushu J. Math. 51, 125–147 (1997) · Zbl 0890.33007 · doi:10.2206/kyushujm.51.125
[11] Kato, M.: Appell’s hypergeometric systems F 2 with finite irreducible monodromy groups. Kyushu J. Math. 54, 279–305 (2000) · Zbl 0970.33009 · doi:10.2206/kyushujm.54.279
[12] Katz, N.M.: Algebraic solutions of differential equations (p-curvature and the Hodge filtration). Invent. Math. 18, 1–118 (1972) · Zbl 0278.14004 · doi:10.1007/BF01389714
[13] Katz, N.M.: A conjecture in the arithmetic theory of differential equations. Bull. SMF 110, 203–239 (1982). Corrections on pp. 347–348 · Zbl 0504.12022
[14] Kita, M.: On hypergeometric functions in several variables. I. New integral representations of Euler type. Jpn. J. Math. (N.S.) 18, 25–74 (1992) · Zbl 0767.33009
[15] Matusevich, L.F., Miller, E., Walther, U.: Homological methods for hypergeometric families. J. Am. Math. Soc. 18, 919–941 (2005) · Zbl 1095.13033 · doi:10.1090/S0894-0347-05-00488-1
[16] Sasaki, T.: On the finiteness of the monodromy group of the system of hypergeometric differential equations (F D ). J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24, 565–573 (1977) · Zbl 0388.33003
[17] Schwarz, H.A.: Über diejenigen Fälle, in welchen die Gaussische hypergeometrische reihe eine algebraische Funktion ihres vierten Elements darstellt. J. Reine Angew. Math. 75, 292–335 (1873) · JFM 05.0146.03 · doi:10.1515/crll.1873.75.292
[18] Yoshida, M.: Hypergeometric Functions, My Love. Aspects of Mathematics, vol. 32. Vieweg, Wiesbaden (1997) · Zbl 0889.33008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.