×

A symplectic proof of the Horn inequalities. (English) Zbl 1372.15011

Summary: In this paper, we give a symplectic proof of the Horn inequalities on eigenvalues of a sum of two Hermitian matrices with given spectra. Our method is a combination of tropical calculus for matrix eigenvalues, combinatorics of planar networks, and estimates for the Liouville volume. As a corollary, we give a tropical description of the Duistermaat-Heckman measure on the Horn polytope.

MSC:

15A42 Inequalities involving eigenvalues and eigenvectors
15B57 Hermitian, skew-Hermitian, and related matrices
15A80 Max-plus and related algebras
14T05 Tropical geometry (MSC2010)

References:

[1] Alekseev, A., On Poisson actions of compact Lie groups on symplectic manifolds, J. Differential Geom., 45, 2, 241-256 (1997) · Zbl 0912.53018
[2] Alekseev, A.; Davydenkova, I., Inequalities from Poisson brackets, Indag. Math., 25, 5, 846-871 (2014) · Zbl 1301.53087
[3] Alekseev, A.; Meinrenken, E.; Woodward, C., Linearization of Poisson actions and singular values of matrix products, Ann. Inst. Fourier (Grenoble), 51, 6, 1691-1717 (2001) · Zbl 1012.53064
[4] Alekseev, A.; Podkopaeva, M.; Szenes, A., The Horn problem and planar networks, Adv. Math., 318, 678-710 (2017) · Zbl 1369.05207
[5] Buch, A. S., The saturation conjecture (after A. Knutson and T. Tao), Enseign. Math. (2), 46, 1-2, 43-60 (2000), with an appendix by William Fulton · Zbl 0979.20041
[6] Canas da Silva, A., Lectures on Symplectic Geometry, Lecture Notes in Mathematics, vol. 1764 (2001), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 1016.53001
[8] Fomin, S.; Zelevinsky, A., Total positivity: tests and parametrizations, Math. Intelligencer, 22, 1, 23-33 (2000) · Zbl 1052.15500
[9] Fulton, W., Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bull. Amer. Math. Soc. (N.S.), 37, 3, 209-249 (2000) · Zbl 0994.15021
[10] Guillemin, V.; Sternberg, S., The Gelfand-Cetlin system and quantization of the complex flag manifolds, J. Funct. Anal., 52, 1, 106-128 (1983) · Zbl 0522.58021
[11] Horn, A., Eigenvalues of sums of Hermitian matrices, Pacific J. Math., 12, 225-241 (1962) · Zbl 0112.01501
[12] Klyachko, A. A., Stable vector bundles and Hermitian operators, Selecta Math. (N.S.), 4, 419-445 (1998) · Zbl 0915.14010
[13] Knutson, A.; Tao, T., The honeycomb model of \(G L_n(C)\) tensor products I: proof of the saturation conjecture, J. Amer. Math. Soc., 12, 1055-1090 (1999) · Zbl 0944.05097
[14] Knutson, A.; Tao, T.; Woodward, C., The honeycomb model of \(G L_n(C)\) tensor products II: puzzles determine facets of the Littlewood-Richardson cone, J. Amer. Math. Soc., 17, 19-48 (2004) · Zbl 1043.05111
[15] Lindström, B., On the vector representations of induced matroids, Bull. Lond. Math. Soc., 5, 85-90 (1973) · Zbl 0262.05018
[16] Speyer, D., Horn’s problem, Vinnikov curves and the hive cone, Duke Math. J., 127, 3, 395-427 (2005) · Zbl 1069.14037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.