×

Linearization of Poisson actions and singular values of matrix products. (English) Zbl 1012.53064

The authors consider Poisson actions of Poisson-Lie groups on symplectic manifolds. A Poisson-Lie group, a notion which was introduced by Drinfeld, is a Lie group endowed with a Poisson structure such that group multiplication is a Poisson map. J.-H. Lu defined the notion of a moment map for a Poisson action of a Poisson-Lie group, which takes values in the dual Poisson-Lie group in contrast to ordinary moment maps taking values in the dual Lie algebra. Compact Lie groups \(K\) carry a distinguished non-trivial Lie-Poisson structure known as the Lu-Weinstein structure. Alekseev showed that for every Poisson \(K\)-action on a symplectic manifold \((M,\Omega)\) with \(K^{\star}\)-valued moment map \(\Psi\), there is a different symplectic form \(\omega\) for which the action is Hamiltonian in the usual sense with a moment map \(\Phi\) taking values in the dual of the Lie algebra. Poisson reductions of \((M,\Omega,\Psi)\) are isomorphic to reductions of its linearization \((M,\omega,\Phi)\) as (stratified) symplectic spaces.
The first main result of this paper is that the linearization functor preserves operations of products, sums and conjugation on the categories of symplectic \(K\)-manifolds with both moment maps up to symplectomorphisms. The proof is based on the Moser isotopy argument. As an application the authors prove the Thomson conjecture on singular values of products of complex matrices and the corresponding statement for real matrices.
The second main result is a formula comparing the Liouville volume forms defined by \(\omega\) and \(\Omega\). This formula involves the modular function for \(K^{\star}\) and a Duflo factor. The authors obtain a hyperbolic version of Duflo isomorphism as a corollary of this result.

MSC:

53D20 Momentum maps; symplectic reduction
15A18 Eigenvalues, singular values, and eigenvectors
37J15 Symmetries, invariants, invariant manifolds, momentum maps, reduction (MSC2010)

References:

[1] On Poisson actions of compact Lie groups on symplectic manifolds, J. Differential Geom., 45, 2, 241-256 (1997) · Zbl 0912.53018
[2] Lie group valued moment maps, J. Differential Geom., 48, 3, 445-495 (1998) · Zbl 0948.53045
[3] Coadjoint orbits, moment polytopes, and the Hilbert-Mumford criterion, J. Amer. Math. Soc., 13, 433-466 (2000) · Zbl 0979.53092 · doi:10.1090/S0894-0347-00-00327-1
[4] Stokes matrices and Poisson Lie groups (2000)
[5] Quantum groups, Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), Vol. 1, 2, 798-820 (1987) · Zbl 0667.16003
[6] Convexity and tightness for restrictions of Hamiltonian functions to fixed point sets of an antisymplectic involution, Trans. Amer. Math. Soc., 275, 412-429 (1983) · Zbl 0504.58020
[7] Poisson harmonic forms, Kostant harmonic forms, and the \(S^1\)-equivariant cohomology of \(K/T\), Adv. Math., 142, 2, 171-220 (1999) · Zbl 0914.22009
[8] A convexity theorem for Poisson actions of compact Lie groups, Ann. Sci. Ecole Norm. Sup., 29, 6, 787-809 (1996) · Zbl 0877.58025
[9] Eigenvalues of sums of Hermitian matrices (after A. Klyachko), Séminaire Bourbaki, n°252, exp. 845, 255-269 (199798) · Zbl 0929.15006
[10] Differential geometry and symmetric spaces, Vol. XII (1962) · Zbl 0111.18101
[11] Geometric analysis on symmetric spaces (1994) · Zbl 0809.53057
[12] Poisson Lie groups and non-linear convexity theorems, Math. Nachr., 191, 153-187 (1998) · Zbl 0912.58013 · doi:10.1002/mana.19981910108
[13] Polygons in symmetric spaces and euclidean buildings (Preprint, in preparation)
[14] Stable bundles, representation theory and Hermitian operators, Selecta Math. (N.S.), 4, 3, 419-445 (1998) · Zbl 0915.14010 · doi:10.1007/s000290050037
[15] Random walks on symmetric spaces and inequalities for matrix spectra, Workshop on Geometric and Combinatorial Methods in the Hermitian Sum Sprectral Problem (Coimbra, 1999), 319, 37-59 (2000) · Zbl 0980.15015
[16] Algebras of functions on compact quantum groups, Schubert cells and quantum tori, Comm. Math. Phys., 139, 1, 141-170 (1991) · Zbl 0729.17011 · doi:10.1007/BF02102732
[17] Momentum mappings and reduction of Poisson actions, Symplectic geometry, groupoids, and integrable systems (Berkeley, CA, 1989), 209-226 (1991) · Zbl 0735.58004
[18] Coordinates on Schubert cells, Kostant’s harmonic forms, and the Bruhat Poisson structure on \(G/B\), Transform. Groups, 4, 4, 355-374 (1999) · Zbl 0938.22012 · doi:10.1007/BF01238564
[19] On the nonlinear convexity theorem of Kostant, J. Amer. Math. Soc., 4, 2, 349-363 (1991) · Zbl 0785.22019 · doi:10.1090/S0894-0347-1991-1086967-2
[20] Poisson Lie groups, dressing transformations, and Bruhat decompositions, J. Differential Geom., 31, 2, 501-526 (1990) · Zbl 0673.58018
[21] Moment maps and Riemannian symmetric pairs, Math. Ann., 317, 3, 415-457 (2000) · Zbl 0985.37056 · doi:10.1007/PL00004408
[22] Espaces symétriques et méthode de Kashiwara-Vergne, Ann. Sci. École Norm. Sup. (4), 19, 4, 553-581 (1986) · Zbl 0612.43012
[23] L’homomorphisme de Harish-Chandra pour les paires symétriques orthogonales et parties radiales des opérateurs différentiels invariants sur les espaces symétriques, Bull. Soc. Math. France, 126, 3, 295-354 (1998) · Zbl 0919.22003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.