×

\(K\)-theory of cones of smooth varieties. (English) Zbl 1267.14013

Let \(X\) be a smooth projective variety \(X\) over a field \(k\) of characteristic zero and \(R\) its homogeneous coordinate ring. The authors compute the lower \(K\)-theory: \(K_{i}(R), i\leq 1\) in terms of the Zariski cohomology groups \(H^{*}(X, {\mathcal O}(t))\) and \(H^{*}(X, {\Omega}^{*}_{X}(t))\). Here \({\mathcal O}(1)\) is the ample line bundle of the embedding and \({\Omega}_{X}^{*}\) denotes the Kähler differentials of \(X\) relative to \(\mathbb Q\). For \(X\) equal to a curve \(C\) the authors calculate \(K_{0}(R)\), \(K_{1}(R)\) and show that \(K_{-1}(R)=\bigoplus H^{1}(C, {\mathcal O}(n))\). As far as higher \(K\)-theory is concerned, the authors compute \(K_{n}(R)/K_{n}(k)\) for the conic \(xy=z^{2}\).

MSC:

14C35 Applications of methods of algebraic \(K\)-theory in algebraic geometry
19E20 Relations of \(K\)-theory with cohomology theories
19E08 \(K\)-theory of schemes
19D50 Computations of higher \(K\)-theory of rings

References:

[1] G. Cortiñas, C. Haesemeyer, M. Schlichting, and C. Weibel, Cyclic homology, cdh-cohomology and negative \?-theory, Ann. of Math. (2) 167 (2008), no. 2, 549 – 573. · Zbl 1191.19003 · doi:10.4007/annals.2008.167.549
[2] G. Cortiñas, C. Haesemeyer, and C. Weibel, \?-regularity, \?\?\?-fibrant Hochschild homology, and a conjecture of Vorst, J. Amer. Math. Soc. 21 (2008), no. 2, 547 – 561. · Zbl 1173.19002
[3] G. Cortiñas, C. Haesemeyer, and C. A. Weibel, Infinitesimal cohomology and the Chern character to negative cyclic homology, Math. Ann. 344 (2009), no. 4, 891 – 922. · Zbl 1189.19002 · doi:10.1007/s00208-009-0333-9
[4] G. Cortiñas, C. Haesemeyer, Mark E. Walker, and C. Weibel, Bass’ \?\? groups and cdh-fibrant Hochschild homology, Invent. Math. 181 (2010), no. 2, 421 – 448. · Zbl 1238.19002 · doi:10.1007/s00222-010-0253-z
[5] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. · Zbl 0367.14001
[6] S. Geller, L. Reid, and C. Weibel, The cyclic homology and \?-theory of curves, J. Reine Angew. Math. 393 (1989), 39 – 90. · Zbl 0649.14006 · doi:10.1515/crll.1989.393.39
[7] Shigeru Iitaka, Algebraic geometry, Graduate Texts in Mathematics, vol. 76, Springer-Verlag, New York-Berlin, 1982. An introduction to birational geometry of algebraic varieties; North-Holland Mathematical Library, 24. · Zbl 0491.14006
[8] Christian Kassel, Cyclic homology, comodules, and mixed complexes, J. Algebra 107 (1987), no. 1, 195 – 216. · Zbl 0617.16015 · doi:10.1016/0021-8693(87)90086-X
[9] Nicholas M. Katz and Tadao Oda, On the differentiation of de Rham cohomology classes with respect to parameters, J. Math. Kyoto Univ. 8 (1968), 199 – 213. · Zbl 0165.54802
[10] Amalendu Krishna and V. Srinivas, Zero-cycles and \?-theory on normal surfaces, Ann. of Math. (2) 156 (2002), no. 1, 155 – 195. · Zbl 1060.14015 · doi:10.2307/3597187
[11] A. Krishna and V. Srinivas, in preparation.
[12] Mark I. Krusemeyer, Fundamental groups, algebraic \?-theory, and a problem of Abhyankar, Invent. Math. 19 (1973), 15 – 47. · Zbl 0247.14005 · doi:10.1007/BF01418849
[13] James D. Lewis and Shuji Saito, Algebraic cycles and Mumford-Griffiths invariants, Amer. J. Math. 129 (2007), no. 6, 1449 – 1499. · Zbl 1132.14007 · doi:10.1353/ajm.2007.0046
[14] Ruth Ingrid Michler, Hodge-components of cyclic homology for affine quasi-homogeneous hypersurfaces, Astérisque 226 (1994), 10, 321 – 333. \?-theory (Strasbourg, 1992). · Zbl 0832.14005
[15] M. Pavaman Murthy, Vector bundles over affine surfaces birationally equivalent to a ruled surface, Ann. of Math. (2) 89 (1969), 242 – 253. · Zbl 0185.24504 · doi:10.2307/1970667
[16] Christophe Soulé, Opérations en \?-théorie algébrique, Canad. J. Math. 37 (1985), no. 3, 488 – 550 (French). · Zbl 0575.14015 · doi:10.4153/CJM-1985-029-x
[17] V. Srinivas, Vector bundles on the cone over a curve, Compositio Math. 47 (1982), no. 3, 249 – 269. · Zbl 0512.14010
[18] V. Srinivas, Grothendieck groups of polynomial and Laurent polynomial rings, Duke Math. J. 53 (1986), no. 3, 595 – 633. · Zbl 0615.14009 · doi:10.1215/S0012-7094-86-05334-2
[19] V. Srinivas, \?\(_{1}\) of the cone over a curve, J. Reine Angew. Math. 381 (1987), 37 – 50. · Zbl 0631.14007 · doi:10.1515/crll.1987.381.37
[20] Richard G. Swan, On seminormality, J. Algebra 67 (1980), no. 1, 210 – 229. · Zbl 0473.13001 · doi:10.1016/0021-8693(80)90318-X
[21] Charles A. Weibel, \?\(_{2}\), \?\(_{3}\) and nilpotent ideals, J. Pure Appl. Algebra 18 (1980), no. 3, 333 – 345. · Zbl 0444.13004 · doi:10.1016/0022-4049(80)90008-0
[22] C. A. Weibel, Mayer-Vietoris sequences and module structures on \?\?_{\ast }, Algebraic \?-theory, Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill., 1980) Lecture Notes in Math., vol. 854, Springer, Berlin, 1981, pp. 466 – 493.
[23] Charles A. Weibel, Homotopy algebraic \?-theory, Algebraic \?-theory and algebraic number theory (Honolulu, HI, 1987) Contemp. Math., vol. 83, Amer. Math. Soc., Providence, RI, 1989, pp. 461 – 488. · Zbl 0638.18005 · doi:10.1090/conm/083/991991
[24] Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. · Zbl 0797.18001
[25] Charles Weibel, The negative \?-theory of normal surfaces, Duke Math. J. 108 (2001), no. 1, 1 – 35. · Zbl 1092.14014 · doi:10.1215/S0012-7094-01-10811-9
[26] Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-New York, 1960. · Zbl 0322.13001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.