×

Functional reduction of one-loop Feynman integrals with arbitrary masses. (English) Zbl 1522.81280

Summary: A method of functional reduction for the dimensionally regularized one-loop Feynman integrals with massive propagators is described in detail.
The method is based on a repeated application of the functional relations proposed by the author. Explicit formulae are given for reducing one-loop scalar integrals to a simpler ones, the arguments of which are the ratios of polynomials in the masses and kinematic invariants. We show that a general scalar \(n\)-point integral, depending on \(n(n + 1)/2\) generic masses and kinematic variables, can be expressed as a linear combination of integrals depending only on \(n\) variables. The latter integrals are given explicitly in terms of hypergeometric functions of \((n - 1)\) dimensionless variables. Analytic expressions for the 2-, 3- and 4-point integrals, that depend on the minimal number of variables, were also obtained by solving the dimensional recurrence relations. The resulting expressions for these integrals are given in terms of Gauss’ hypergeometric function \(_2F_1\), the Appell function \(F_1\) and the hypergeometric Lauricella-Saran function \(F_S\). A modification of the functional reduction procedure for some special values of kinematic variables is considered.

MSC:

81T18 Feynman diagrams
81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
81V10 Electromagnetic interaction; quantum electrodynamics

References:

[1] ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
[2] CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
[3] FCC collaboration, FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1, Eur. Phys. J. C79 (2019) 474 [INSPIRE].
[4] Heinrich, G., Collider Physics at the Precision Frontier, Phys. Rept., 922, 1 (2021) · Zbl 1509.81614 · doi:10.1016/j.physrep.2021.03.006
[5] G. Passarino and M.J.G. Veltman, One Loop Corrections for e^+e^−Annihilation Into μ^+μ^−in the Weinberg Model, Nucl. Phys. B160 (1979) 151 [INSPIRE].
[6] G.J. van Oldenborgh and J.A.M. Vermaseren, New Algorithms for One Loop Integrals, Z. Phys. C46 (1990) 425 [INSPIRE].
[7] A. Ferroglia, M. Passera, G. Passarino and S. Uccirati, All purpose numerical evaluation of one loop multileg Feynman diagrams, Nucl. Phys. B650 (2003) 162 [hep-ph/0209219] [INSPIRE]. · Zbl 1005.81059
[8] Ellis, RK; Kunszt, Z.; Melnikov, K.; Zanderighi, G., One-loop calculations in quantum field theory: from Feynman diagrams to unitarity cuts, Phys. Rept., 518, 141 (2012) · doi:10.1016/j.physrep.2012.01.008
[9] J.M. Campbell, E.W.N. Glover and D.J. Miller, One loop tensor integrals in dimensional regularization, Nucl. Phys. B498 (1997) 397 [hep-ph/9612413] [INSPIRE].
[10] F. Jegerlehner and O. Tarasov, FIRCLA, one loop correction to e^+e^− → \( \nu \overline{\nu}h\) and basis of Feynman integrals in higher dimensions, Nucl. Phys. B Proc. Suppl.116 (2003) 83 [hep-ph/0212004] [INSPIRE].
[11] W. Giele, E.W.N. Glover and G. Zanderighi, Numerical evaluation of one-loop diagrams near exceptional momentum configurations, Nucl. Phys. B Proc. Suppl.135 (2004) 275 [hep-ph/0407016] [INSPIRE].
[12] A.V. Kotikov, Differential equations method: New technique for massive Feynman diagrams calculation, Phys. Lett. B254 (1991) 158 [INSPIRE]. · Zbl 1020.81734
[13] Golubeva, VA, Some Problems in the Analytic Theory of Feynman Integrals, Russ. Math. Surv., 31, 139 (1976) · Zbl 0342.28005 · doi:10.1070/RM1976v031n02ABEH001487
[14] Argeri, M.; Mastrolia, P., Feynman Diagrams and Differential Equations, Int. J. Mod. Phys. A, 22, 4375 (2007) · Zbl 1141.81325 · doi:10.1142/S0217751X07037147
[15] D.I. Kazakov, Multiloop Calculations: Method of Uniqueness and Functional Equations, Teor. Mat. Fiz.62 (1984) 127 [INSPIRE].
[16] Tarasov, OV, Connection between Feynman integrals having different values of the space-time dimension, Phys. Rev. D, 54, 6479 (1996) · Zbl 0925.81121 · doi:10.1103/PhysRevD.54.6479
[17] S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A15 (2000) 5087 [hep-ph/0102033] [INSPIRE]. · Zbl 0973.81082
[18] Tarasov, OV, New relationships between Feynman integrals, Phys. Lett. B, 670, 67 (2008) · doi:10.1016/j.physletb.2008.10.021
[19] Tarasov, OV, Derivation of Functional Equations for Feynman Integrals from Algebraic Relations, JHEP, 11, 038 (2017) · Zbl 1383.81328 · doi:10.1007/JHEP11(2017)038
[20] Tarasov, OV, Functional reduction of Feynman integrals, JHEP, 02, 173 (2019) · doi:10.1007/JHEP02(2019)173
[21] D.B. Melrose, Reduction of Feynman diagrams, Nuovo Cim.40 (1965) 181 [INSPIRE]. · Zbl 0137.45701
[22] D.M. Sincov, Notes sur la calcul functionnel (in Russian), Bull. Soc. Phys.-Math. Kazan13 (1903) 48.
[23] Sincov, DM, Über eine funktionalgleichung, Arch. Math. Phys., 6, 216 (1903) · JFM 34.0421.03
[24] E. Castillo, A. Iglesias and R. Ruiz-Cobo, Functional Equations in Applied Sciences, Mathematics in Science and Engineering, Elsevier Science, Amsterdam, The Netherlands (2004). · Zbl 1071.39022
[25] C.G. Bollini and J.J. Giambiagi, Lowest order divergent graphs in nu-dimensional space, Phys. Lett. B40 (1972) 566 [INSPIRE].
[26] E.E. Boos and A.I. Davydychev, A method of evaluating massive Feynman integrals, Theor. Math. Phys.89 (1991) 1052 [INSPIRE].
[27] Kalmykov, MY, Gauss hypergeometric function: Reduction, ϵ-expansion for integer/half-integer parameters and Feynman diagrams, JHEP, 04, 056 (2006) · doi:10.1088/1126-6708/2006/04/056
[28] Kalmykov, MY; Ward, BFL; Yost, S., All order ϵ-expansion of Gauss hypergeometric functions with integer and half/integer values of parameters, JHEP, 02, 040 (2007) · doi:10.1088/1126-6708/2007/02/040
[29] T. Huber and D. Maître, HypExp: A Mathematica package for expanding hypergeometric functions around integer-valued parameters, Comput. Phys. Commun.175 (2006) 122 [hep-ph/0507094] [INSPIRE]. · Zbl 1196.68326
[30] O.V. Tarasov, Application and explicit solution of recurrence relations with respect to space-time dimension, Nucl. Phys. B Proc. Suppl.89 (2000) 237 [hep-ph/0102271] [INSPIRE].
[31] C. Anastasiou, E.W.N. Glover and C. Oleari, Scalar one loop integrals using the negative dimension approach, Nucl. Phys. B572 (2000) 307 [hep-ph/9907494] [INSPIRE]. · Zbl 0956.81053
[32] J. Fleischer, F. Jegerlehner and O.V. Tarasov, A new hypergeometric representation of one loop scalar integrals in d dimensions, Nucl. Phys. B672 (2003) 303 [hep-ph/0307113] [INSPIRE]. · Zbl 1058.81605
[33] Phan, KH; Riemann, T., Scalar 1-loop Feynman integrals as meromorphic functions in space-time dimension d, Phys. Lett. B, 791, 257 (2019) · Zbl 1411.81094 · doi:10.1016/j.physletb.2019.02.044
[34] Bytev, VV; Kalmykov, MY; Moch, S-O, HYPERgeometric functions DIfferential REduction (HYPERDIRE): MATHEMATICA based packages for differential reduction of generalized hypergeometric functions: F_Dand F_SHorn-type hypergeometric functions of three variables, Comput. Phys. Commun., 185, 3041 (2014) · Zbl 1348.33001 · doi:10.1016/j.cpc.2014.07.014
[35] A.I. Davydychev, Four-point function in general kinematics through geometrical splitting and reduction, J. Phys. Conf. Ser.1085 (2018) 052016 [arXiv:1711.07351] [INSPIRE].
[36] J. Fleischer, F. Jegerlehner and O.V. Tarasov, Algebraic reduction of one loop Feynman graph amplitudes, Nucl. Phys. B566 (2000) 423 [hep-ph/9907327] [INSPIRE]. · Zbl 0956.81054
[37] E. Byckling and K. Kajantie, Particle Kinematics, A Wiley-Interscience publication, Wiley, Hoboken, U.S.A. (1973).
[38] Kniehl, BA; Tarasov, OV, Finding new relationships between hypergeometric functions by evaluating Feynman integrals, Nucl. Phys. B, 854, 841 (2012) · Zbl 1229.81100 · doi:10.1016/j.nuclphysb.2011.09.015
[39] A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions. Vol. I. McGraw-Hill Book Company, Inc., New York-Toronto-London, (1953). Reprinted by Robert E. Krieger Publishing Co. Inc., (1981). Table errata: Math. Comp. v. 65 (1996), no. 215, p. (1385), v. 41 (1983), no. 164, p. 778, v. 30 (1976), no. 135, p. 675, v. 25 (1971), no. 115, p. 635, v. 25 (1971), no. 113, p. 199, v. 24 (1970), no. 112, p. 999, v. 24 (1970), no. 110, p. 504, v. 17 (1963), no. 84, p. 485.
[40] D.S. Kershaw, Feynman amplitudes as power series, Phys. Rev. D8 (1973) 2708 [INSPIRE].
[41] A.I. Davydychev, Some exact results for N point massive Feynman integrals, J. Math. Phys.32 (1991) 1052 [INSPIRE]. · Zbl 0729.58054
[42] A.I. Davydychev, General results for massive N point Feynman diagrams with different masses, J. Math. Phys.33 (1992) 358 [INSPIRE].
[43] Mastrolia, P.; Mizera, S., Feynman Integrals and Intersection Theory, JHEP, 02, 139 (2019) · Zbl 1411.81093 · doi:10.1007/JHEP02(2019)139
[44] Remiddi, E.; Tancredi, L., Schouten identities for Feynman graph amplitudes; The Master Integrals for the two-loop massive sunrise graph, Nucl. Phys. B, 880, 343 (2014) · Zbl 1284.81139 · doi:10.1016/j.nuclphysb.2014.01.009
[45] V.V. Bytev and B.A. Kniehl, Derivatives of any Horn-type hypergeometric functions with respect to their parameters, Nucl. Phys. B952 (2020) 114911 [arXiv:2008.09357] [INSPIRE]. · Zbl 1481.33012
[46] J. Blümlein, M. Saragnese and C. Schneider, Hypergeometric Structures in Feynman Integrals, arXiv:2111.15501 [INSPIRE].
[47] J. Chen, C. Ma and L.L. Yang, Alphabet of one-loop Feynman integrals, arXiv:2201.12998 [INSPIRE].
[48] P. Appell and J. Kampé de Fériet, Fonctions hypergéométriques et hypersphériques. Polynomes d’Hermite, Gauthier-Villars, Paris, France (1926). · JFM 52.0361.13
[49] Lauricella, G., Sulle funzioni ipergeometriche a pru variabili, Rend. Circ. Mat. Palermo, 7, 111 (1893) · JFM 25.0756.01 · doi:10.1007/BF03012437
[50] Saran, S., Hypergeometric functions of three variables, Ganita, 5, 77 (1954) · Zbl 0058.29602
[51] Saran, S., Transformations of certain hypergeometric functions of three variables, Acta Math., 93, 293 (1955) · Zbl 0064.30902 · doi:10.1007/BF02392525
[52] A.I. Akhiezer and V.B. Berestetskii, Quantum Electrodynamics by A.I. Akhiezer and V.B. Berestetskii, Authorized English Ed., Rev. and Enl. by the Authors, Translated from the 2d Russian Ed, Interscience monographs and texts in physics and astronomy, v. 11, Interscience Publishers (1965), [archive.org].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.