×

Two-sample nonparametric test for proportional reversed hazards. (English) Zbl 1543.62106

Summary: In the last few decades, several works have been undertaken in the context of proportional reversed hazard rates (PRHR) but any specific statistical methodology for the PRHR hypothesis is absent in the literature. This paper proposes a two-sample nonparametric test based on two independent samples to verify the PRHR assumption. Based on a consistent U-statistic three statistical methodologies have been developed exploiting U-statistics theory, jackknife empirical likelihood and adjusted jackknife empirical likelihood method. A simulation study has been performed to assess the merit of the proposed test procedure. Finally, the proposed procedure is applied to a data set in the context of brain injury-related biomarkers and a data set related to Duchenne muscular dystrophy.

MSC:

62-08 Computational methods for problems pertaining to statistics

Software:

emplik

References:

[1] R: A Language and Environment for Statistical Computing (2021), R Foundation for Statistical Computing: R Foundation for Statistical Computing Vienna, Austria
[2] Andersen, P. K.; Borgan, O.; Gill, R. D.; Keiding, N., Statistical Models Based on Counting Processes (2012), Springer Science & Business Media: Springer Science & Business Media New York
[3] Andrews, D. F.; Herzberg, A. M., Data: a Collection of Problems from Many Fields for the Student and Research Worker (2012), Springer-Verlag: Springer-Verlag New York · Zbl 0567.62002
[4] Baratnia, M.; Doostparast, M., A reversed-hazard-based nonlinear model for one-way classification, Commun. Stat., Simul. Comput. (2021)
[5] Barlow, R. E.; Marshall, A. W.; Proschan, F., Properties of probability distributions with monotone hazard rate, Ann. Math. Stat., 34, 375-389 (1963) · Zbl 0249.60006
[6] Block, H. W.; Savits, T. H.; Singh, H., The reversed hazard rate function, Probab. Eng. Inf. Sci., 12, 69-90 (1998) · Zbl 0972.90018
[7] Burr, I. W., Cumulative frequency functions, Ann. Math. Stat., 13, 215-232 (1942) · Zbl 0060.29602
[8] Chechile, R. A., Properties of reverse hazard functions, J. Math. Psychol., 55, 203-222 (2011) · Zbl 1219.62160
[9] Chen, J.; Variyath, A. M.; Abraham, B., Adjusted empirical likelihood and its properties, J. Comput. Graph. Stat., 17, 426-443 (2008)
[10] Chen, S.; Haziza, D., Jackknife empirical likelihood method for multiply robust estimation with missing data, Comput. Stat. Data Anal., 127, 258-268 (2018) · Zbl 1469.62042
[11] Chen, Y. J.; Ning, W., Adjusted jackknife empirical likelihood (2016), arXiv preprint
[12] Cox, D. R., Regression models and life-tables, J. R. Stat. Soc., Ser. B, Methodol., 34, 187-202 (1972) · Zbl 0243.62041
[13] Dabrowska, D. M., Kaplan-Meier estimate on the plane, Ann. Stat., 16, 1475-1489 (1988) · Zbl 0653.62071
[14] Deshpande, J. V.; Sengupta, D., Testing the hypothesis of proportional hazards in two populations, Biometrika, 82, 251-261 (1995) · Zbl 0823.62042
[15] Di Crescenzo, A., Some results on the proportional reversed hazards model, Stat. Probab. Lett., 50, 313-321 (2000) · Zbl 0967.60016
[16] El-Gohary, A.; Alshamrani, A.; Al-Otaibi, A. N., The generalized Gompertz distribution, Appl. Math. Model., 37, 13-24 (2013) · Zbl 1349.62035
[17] Fallah, A.; Asgharzadeh, A.; Ng, H. K.T., Statistical inference for component lifetime distribution from coherent system lifetimes under a proportional reversed hazard model, Commun. Stat., Theory Methods, 50, 3809-3833 (2021) · Zbl 07531783
[18] Fang, R.; Li, C.; Li, X., Stochastic comparisons on sample extremes of dependent and heterogenous observations, Statistics, 50, 930-955 (2016) · Zbl 1357.62206
[19] Gross, S. T.; Huber-Carol, C., Regression models for truncated survival data, Scand. J. Stat., 19, 193-213 (1992) · Zbl 0754.62085
[20] Gupta, R. C.; Gupta, R. D., Proportional reversed hazard rate model and its applications, J. Stat. Plan. Inference, 137, 3525-3536 (2007) · Zbl 1119.62098
[21] Gupta, R. C.; Gupta, P. L.; Gupta, R. D., Modeling failure time data by Lehman alternatives, Commun. Stat., Theory Methods, 27, 887-904 (1998) · Zbl 0900.62534
[22] Gupta, R. D.; Kundu, D., Theory & methods: generalized exponential distributions, Aust. N. Z. J. Stat., 41, 173-188 (1999) · Zbl 1007.62503
[23] Jing, B. Y.; Yuan, J.; Zhou, W., Jackknife empirical likelihood, J. Am. Stat. Assoc., 104, 1224-1232 (2009) · Zbl 1388.62136
[24] Kalbfleisch, J.; Lawless, J., Regression models for right truncated data with applications to aids incubation times and reporting lags, Stat. Sin., 1, 19-32 (1991) · Zbl 0826.62089
[25] Kalbfleisch, J.; Lawless, J. F., Inference based on retrospective ascertainment: an analysis of the data on transfusion-related aids, J. Am. Stat. Assoc., 84, 360-372 (1989) · Zbl 0677.62099
[26] Keilson, J.; Sumita, U., Uniform stochastic ordering and related inequalities, Can. J. Stat., 10, 181-198 (1982) · Zbl 0516.60063
[27] Khan, R. A., Resilience family of receiver operating characteristic curves, IEEE Trans. Reliab., 1-11 (2022)
[28] Khan, R. A.; Bhattacharyya, D.; Mitra, M., On some properties of the mean inactivity time function, Stat. Probab. Lett., 170, Article 108993 pp. (2021) · Zbl 1456.90061
[29] Krzanowski, W. J.; Hand, D. J., ROC Curves for Continuous Data (2009), CRC Press · Zbl 1288.62005
[30] Kundu, D.; Gupta, R. D., Characterizations of the proportional (reversed) hazard model, Commun. Stat., Theory Methods, 33, 3095-3102 (2004) · Zbl 1087.62018
[31] Kundu, D.; Raqab, M. Z., Generalized Rayleigh distribution: different methods of estimations, Comput. Stat. Data Anal., 49, 187-200 (2005) · Zbl 1429.62449
[32] Lagakos, S. W.; Barraj, L. M.; Gruttola, V.d., Nonparametric analysis of truncated survival data, with application to aids, Biometrika, 75, 515-523 (1988) · Zbl 0651.62032
[33] Lawless, J. F., Statistical Models and Methods for Lifetime Data (2011), John Wiley & Sons: John Wiley & Sons New York · Zbl 0541.62081
[34] Lee, A., U-Statistics: Theory and Practice (1990), Marcel Dekker: Marcel Dekker New York · Zbl 0771.62001
[35] Lehmann, E. L., Consistency and unbiasedness of certain nonparametric tests, Ann. Math. Stat., 22, 165-179 (1951) · Zbl 0045.40903
[36] Lemonte, A. J., A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function, Comput. Stat. Data Anal., 62, 149-170 (2013) · Zbl 1348.62043
[37] Li, C.; Fang, R.; Li, X., Stochastic comparisons of order statistics from scaled and interdependent random variables, Metrika, 79, 553-578 (2016) · Zbl 1357.62207
[38] Lin, H. L.; Li, Z.; Wang, D.; Zhao, Y., Jackknife empirical likelihood for the error variance in linear models, J. Nonparametr. Stat., 29, 151-166 (2017) · Zbl 1369.62060
[39] Liu, Z.; Xia, X.; Zhou, W., A test for equality of two distributions via jackknife empirical likelihood and characteristic functions, Comput. Stat. Data Anal., 92, 97-114 (2015) · Zbl 1468.62126
[40] Marshall, A. W.; Olkin, I., Life Distributions: Structure of Nonparametric, Semiparametric, and Parametric Families, Springer Series in Statistics (2007), Springer: Springer New York · Zbl 1304.62019
[41] Nanda, A. K.; Shaked, M., The hazard rate and the reversed hazard rate orders, with applications to order statistics, Ann. Inst. Stat. Math., 53, 853-864 (2001) · Zbl 1006.60015
[42] Owen, A., Empirical likelihood ratio confidence regions, Ann. Stat., 18, 90-120 (1990) · Zbl 0712.62040
[43] Owen, A., Empirical likelihood for linear models, Ann. Stat., 19, 1725-1747 (1991) · Zbl 0799.62048
[44] Owen, A. B., Empirical likelihood ratio confidence intervals for a single functional, Biometrika, 75, 237-249 (1988) · Zbl 0641.62032
[45] Owen, A. B., Empirical Likelihood (2001), Chapman and Hall/CRC · Zbl 0989.62019
[46] Quenouille, M. H., Notes on bias in estimation, Biometrika, 43, 353-360 (1956) · Zbl 0074.14003
[47] Randles, R. H.; Wolfe, D. A., Introduction to the Theory of Nonparametric Statistics (1979), Wiley: Wiley New York, Technical Report · Zbl 0529.62035
[48] Sankaran, P.; Anjana, S., Proportional cause-specific reversed hazards model, J. Nonparametr. Stat., 28, 68-83 (2016) · Zbl 1381.62265
[49] Sengupta, D.; Nanda, A. K., The proportional reversed hazards regression model, J. Appl. Statist. Sc., 18, 461 (2010) · Zbl 1538.62287
[50] Shi, X., The approximate independence of jackknife pseudo-values and the bootstrap methods, J. Wuhan Inst. Hydra-Electr. Eng., 2, 83-90 (1984)
[51] Thomas, D. R.; Grunkemeier, G. L., Confidence interval estimation of survival probabilities for censored data, J. Am. Stat. Assoc., 70, 865-871 (1975) · Zbl 0331.62028
[52] Topp, C. W.; Leone, F. C., A family of J-shaped frequency functions, J. Am. Stat. Assoc., 50, 209-219 (1955) · Zbl 0064.13601
[53] Tukey, J., Bias and confidence in not quite large samples, Ann. Math. Stat., 29, 614 (1958)
[54] Turck, N.; Vutskits, L.; Sanchez-Pena, P.; Robin, X.; Hainard, A.; Gex-Fabry, M.; Fouda, C.; Bassem, H.; Mueller, M.; Lisacek, F., A multiparameter panel method for outcome prediction following aneurysmal subarachnoid hemorrhage, Intensive Care Med., 36, 107-115 (2010)
[55] Von Mises, R., La distribution de la plus grande de n valuers, Rev. Math. Union Interbalcanique, 1, 141-160 (1936) · Zbl 0016.12801
[56] Wang, B. X.; Yu, K.; Coolen, F. P., Interval estimation for proportional reversed hazard family based on lower record values, Stat. Probab. Lett., 98, 115-122 (2015) · Zbl 1308.62198
[57] Zardasht, V., Jackknife empirical likelihood inference for the variance residual life function, REVSTAT Stat. J., 19, 23-34 (2021) · Zbl 1478.62299
[58] Zhao, Y.; Meng, X.; Yang, H., Jackknife empirical likelihood inference for the mean absolute deviation, Comput. Stat. Data Anal., 91, 92-101 (2015) · Zbl 1468.62238
[59] Zhao, Y.; Su, Y.; Yang, H., Jackknife empirical likelihood inference for the Pietra ratio, Comput. Stat. Data Anal., 152, Article 107049 pp. (2020) · Zbl 1510.62214
[60] Zhou, M., emplik: Empirical Likelihood Ratio for Censored/Truncated Data (2020), R package version 1.1-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.