×

Properties of reverse hazard functions. (English) Zbl 1219.62160

Summary: For continuous distributions reverse hazard is defined as the probability density divided by the cumulative probability, \(F(x)\); whereas the usual hazard function is the density divided by the survivor function, \(1 - F(x)\). Reverse hazard corresponds to the conditional density of an immediate failure or state change, conditioned by the fact that the state change occurred. For example, of all the items that failed, the proportion of those items that immediately failed is reverse hazard. Reverse hazard exhibits many symmetrical properties with hazard. In this paper a set of theorems are developed that explicate the properties of reverse hazard for both continuous and discrete probability distributions. Taken together, hazard and reverse hazard are a powerful set of theoretical constructs that are valuable for understanding stochastic systems.

MSC:

62N99 Survival analysis and censored data
62P15 Applications of statistics to psychology
62B10 Statistical aspects of information-theoretic topics
Full Text: DOI

References:

[1] Aalen, O. O., Nonparametric inference for a family of counting processes, Annals of Statistics, 6, 701-726 (1978) · Zbl 0389.62025
[2] Ashby, F. G.; Tein, J.-Y.; Balakrishnan, J. D., Response time distributions in memory scanning, Journal of Mathematical Psychology, 37, 526-555 (1993) · Zbl 0800.62753
[3] Ashby, F. G.; Townsend, J. T., Decomposing the reaction time distribution: Pure insertion and selective influence revisited, Journal of Mathematical Psychology, 21, 93-123 (1980) · Zbl 0455.92020
[4] Bain, L. J., Statistical analysis of reliability and life-time models (1978), Marcell Dekker: Marcell Dekker New York · Zbl 0419.62076
[5] Balakrishnan, J. D., Simple additivity of stochastic psychological processes: tests and measures, Psychometrika, 59, 217-240 (1994) · Zbl 0826.62097
[6] Barlow, R. E.; Marshall, A. W.; Proschan, F., Properties of probability distri- butions with monotone hazard rate, Annals of Mathematical Statistics, 34, 375-389 (1963) · Zbl 0249.60006
[7] Barlow, R. E.; Proschan, F., Statistical analysis of reliability and life-testing methods (1965), Marcel Dekker: Marcel Dekker New York · Zbl 0132.39302
[8] Barlow, R. E.; Proschan, F., Mathematical theory of reliability (1975), Wiley: Wiley New York · Zbl 0132.39302
[9] Batchelder, W. H.; Riefer, D. M., Theoretical and empirical review of multinomial process tree modeling, Psychonomic Bulletin & Review, 6, 57-86 (1999)
[10] Bernoulli, D., Specimen theoriae novae de mensura sortis, Comentarii Academiae Scientiarum Imperiales Petropolitanae, 5, 175-192 (1738)
[11] Bertoin, J.; LeJan, Y., Representation of measures by balayage from a regular point, Annals of Probability, 20, 538-548 (1992) · Zbl 0749.60038
[12] Block, H. W.; Savits, T. H.; Singh, H., The reverse hazard rate function, Probability in the Engineering and Informational Sciences, 12, 69-90 (1998) · Zbl 0972.90018
[13] Bloxom, B., Estimating response time hazard functions: an exposition and extension, Journal of Mathematical Psychology, 28, 401-420 (1984) · Zbl 0557.62092
[14] Burbeck, S. L.; Luce, R. D., Evidence from auditory simple reaction times for both change and level detectors, Perception & Psychophysics, 32, 117-133 (1982)
[15] Chandra, N. K.; Roy, D., Some results on reverse hazard rate, Probability in the Engineering and Informational Sciences, 15, 95-102 (2001) · Zbl 1087.62510
[16] Chechile, R. A., Trace susceptibility theory, Journal of Experimental Psychology: General, 116, 203-222 (1987)
[17] Chechile, R. A., Mathematical tools for hazard function analysis, Journal of Mathematical Psychology, 47, 478-494 (2003) · Zbl 1077.91043
[18] Chechile, R. A., Memory hazard functions: a vehicle for theory development and test, Psychological Review, 113, 31-56 (2006)
[19] Chechile, R. A., Corrigendum to: Mathematical tools for hazard function analysis [J. Math. Psychol. 47 (2003)], Journal of Mathematical Psychology, 53, 298-299 (2009) · Zbl 1173.91452
[20] Chechile, R. A.; Meyer, D. L., A Bayesian procedure for separately estimating storage and retrieval components of forgetting, Journal of Mathematical Psychology, 13, 269-295 (1976) · Zbl 0351.92030
[21] Colonius, H., Modeling the redundant signals effect by specifying the hazard function, Perception and Psychophysics, 43, 604-606 (1988)
[22] Coombs, C. H.; Dawes, R. M.; Tversky, A., Mathematical psychology: an elementary introduction (1970), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0205.23701
[23] Donders, F. C., On the speed of mental processes, (Koster, W. G., Attention and performance II (1969), North-Holland: North-Holland Amsterdam), Translated by W.G. Koster (Original work published in 1868)
[24] Efron, B.; Johnstone, I. M., Fisher’s information in terms of the hazard rate, The Annals of Statistics, 18, 38-62 (1990) · Zbl 0722.62022
[25] Egeth, H. E.; Folk, C. L.; Mullin, P. A., Spatial parallelism in the processing of lines, letters, and lexicality, (Shepp, B. E.; Ballesteros, S., Object perception: structure and process (1989), Erlbaum: Erlbaum Hillsdale, NJ), 19-52
[26] Finkelstein, M. S., On the reversed hazard rate, Reliability Engineering and System Safety, 78, 71-75 (2002)
[27] Graczyk, P., Cramér theorem on symmetric spaces of noncompact type, Journal of Theoretical Probability, 7, 609-613 (1994) · Zbl 0808.60013
[28] Green, D. M.; Swets, J. A., Signal detection theory and psychophysics (1966), Krieger Publishing Company: Krieger Publishing Company New York
[29] Gross, S. T.; Huber-Carol, C., Regression models for truncated survival data, Scandinavian Journal of Statistics, 19, 193-213 (1992) · Zbl 0754.62085
[30] Grünwald, P., Minimum description length tutorial, (Grünwald, P. D.; Myung, I. J.; Pitt, M. A., Advances in minimum description length: theory and applications (2005), The MIT Press: The MIT Press Cambridge, MA), 23-79
[31] Gupta, R. C.; Gupta, R. D., Proportional reversed hazard rate model and its applications, Journal of Statistical Planning and Inference, 137, 3525-3536 (2007) · Zbl 1119.62098
[32] Gupta, R. D.; Gupta, R. C.; Sankaran, P. G., Some characterization results based on factorization of the (reverse) hazard rate function, Communications in Statistics: Theory and Methods, 33, 3009-3031 (2004) · Zbl 1087.62015
[33] Gupta, S. S.; Panchapakesan, S., Inference for restricted families: (A) multiple decision procedures; (B) order statistics inequalities, (Proschan, F.; Serfling, R. J., Reliability and biometry: statistical analysis of lifelength (1974), SIAM: SIAM Philadelphia, PA), 503-596
[34] Gürler, Ü., Reverse hazard, (Kotz, S.; Read, C. B.; Banks, D. L., Encyclopedia of statistical sciences: update vol. 3 (1999), Wiley: Wiley New York), 643-644 · Zbl 0919.62001
[35] Haydn, N.; Lacroix, Y.; Vaienti, S., Hitting and return times in ergodic dynamical systems, The Annals of Probability, 33, 2043-2050 (2005) · Zbl 1130.37305
[36] Hintzman, D., “Schema abstraction” in a multiple-trace memory model, Psychological Review, 93, 411-428 (1986)
[37] Hintzman, D., Judgments of frequency and recognition memory in a multiple-trace memory model, Psychological Review, 95, 528-551 (1988)
[38] Hockley, W. E., Analysis of response time distributions in the study of cognitive processes, Journal of Experimental Psychology: Learning, Memory, & Cognition, 6, 598-615 (1984)
[39] Hohle, R. H., Inferred components of reaction times as functions of foreperiod duration, Journal of Experimental Psychology, 69, 382-386 (1965)
[40] Jeffreys, H., An invariant form for the prior probability in estimation problems, Proceedings of the Royal Society of London, Series A, 186, 453-461 (1946) · Zbl 0063.03050
[41] Jefreys, H., Theory of probability (1961), Oxford University Press: Oxford University Press London, UK · Zbl 0116.34904
[42] Johnson, N. L.; Kotz, S.; Balakrishnan, N., Continuous univariate distributions. vol. 1 (1994), Wiley: Wiley New York · Zbl 0811.62001
[43] Kalbfleisch, J. D.; Prentice, R. L., The statistical analysis of failure time data (2002), Wiley: Wiley Hoboken, NJ · Zbl 0504.62096
[44] Keilson, J.; Gerber, H., Some results for discrete unimodality, Journal of the American Statistical Association, 66, 386-389 (1971) · Zbl 0236.60017
[45] Klein, J. P.; Moeschberger, M. L., Survival analysis: techniques for censored data (1997), Springer: Springer New York · Zbl 0871.62091
[46] Lee, E. T., Statistical methods for survival data analysis (1992), Wiley: Wiley New York
[47] Lehmann, E. L.; Casella, G., Theory of point estimation (1998), Springer: Springer New York · Zbl 0916.62017
[48] Li, X.; Da, G.; Zhao, P., On reverse hazard rate in general mixture models, Statistics and Probability Letters, 80, 654-661 (2010) · Zbl 1188.60008
[49] Luce, R. D., Response times: their role in inferring elementary mental organization (1986), Oxford University Press: Oxford University Press New York
[50] Lynden-Bell, D., A method of allowing for known observational selection in small samples applied to 3CR Quasars, Monthly Notices of the Royal Astronomical Society, 155, 95-118 (1971)
[51] Macmillan, N. A.; Creelman, C. D., Detection theory: a user’s guide (2005), Erlbaum: Erlbaum Mahwah, NJ
[52] Maddox, W. T.; Ashby, F. G.; Gottlob, L. R., Response time distributions in multidimensional perceptual categorization, Perception and Psychophysics, 60, 620-637 (1998)
[53] Miyamoto, J. M., Generic utility theory: measurement foundations and applications in multiattribute utility theory, Journal of Mathematical Psychology, 32, 357-404 (1988) · Zbl 0686.92023
[54] Miyamoto, J. M., Generic analysis of utility models, (Edwards, W., Utility theories measurements and applications (1992), Kluwer Academic Publishers: Kluwer Academic Publishers Boston)
[55] Mordkoff, J. T.; Yantis, S., An interactive race model of divided attention, Journal of Experimental Psychology: Human Perception and Performance, 17, 520-538 (1991)
[56] Nelson, W., Theory and applications of hazard plotting for censored failure data, Technometrics, 14, 945-965 (1972)
[57] Peterson, M. S.; Kramer, A. F.; Wang, R. F.; Irwin, D. E.; McCarley, G. W., Visual search has memory, Psychological Science, 12, 287-292 (2001)
[58] Prelec, D., The probability weighting function, Econometrica, 66, 497-527 (1988) · Zbl 1009.91007
[59] Ratcliff, R., A theory of memory retrieval, Psychological Review, 85, 59-108 (1978)
[60] Ratcliff, R.; Murdock, B. B., Retrieval processes in recognition memory, Psychological Review, 83, 190-214 (1976)
[61] Sengupta, D.; Nanda, A. K., Log-concave and concave distributions in reliability, Naval Research Logistics Quarterly, 46, 419-433 (1999) · Zbl 0928.62098
[62] Schoenberg, I. J., On Pólya frequency functions I. The totally positive functions and their Laplace transforms, Journal d’Analyse Mathématique, 1, 331-374 (1951) · Zbl 0045.37602
[63] Shaked, M.; Shanthikumar, J. G., Stochastic orders and their applications (1994), Academic Press: Academic Press Boston, MA · Zbl 0806.62009
[64] Singpurwalla, N. D.; Wong, M. Y., Estimation of the failure rate — a survey of nonparametric methods part I: non-Bayesian methods, Communications in Statistics: Theory and Methods, 12, 559-588 (1983) · Zbl 0513.62050
[65] Sloboda, L. N., & Chechile, R. A. (2008). Applying hazard function theory to learning theory. Poster presented at the Psychonomic Society meeting. Chicago, IL. November.; Sloboda, L. N., & Chechile, R. A. (2008). Applying hazard function theory to learning theory. Poster presented at the Psychonomic Society meeting. Chicago, IL. November.
[66] Smith, D. G.; Mewhort, D. J.K., The distribution of latencies constrains theories of decision time: a test of the random-walk model using numeric comparison, Australian Journal of Psychology, 50, 149-156 (1998)
[67] Steffensen, J. F., Some recent researches in the theory of statistics and actuarial science (1930), Cambridge University Press: Cambridge University Press New York · JFM 56.1095.01
[68] Stott, H. P., Cumulative prospect theory’s functional menagerie, Journal of Risk and Uncertainty, 32, 101-130 (2006) · Zbl 1281.91072
[69] Stuart, A.; Ord, K.; Arnold, S., Kendall’s advanced theory of statistics, vol. 2A (1999), Oxford University Press: Oxford University Press London, UK
[70] Thomas, E. A.C., Sufficient conditions for monotone hazard rate and application to latency-probability curves, Journal of Mathematical Psychology, 8, 303-332 (1971)
[71] Townsend, J. T., Serial and within-stage independent parallel model equivalence on the minimum completion time, Journal of Mathematical Psychology, 14, 219-238 (1976) · Zbl 0354.92053
[72] Townsend, J. T.; Ashby, F. G., Methods of modeling capacity in simple processing systems, (Castellan, N. J.; Restle, F., Cognitive theory vol. 3 (1978), Erlbaum: Erlbaum Hillsdale, NJ), 199-239
[73] Townsend, J. T.; Ashby, F. G., The stochastic modeling of elementary psycho-logical processes (1983), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0595.92015
[74] Townsend, J. T.; Nozawa, G., Spatio-temporal properties of elementary perception: an investigation of parallel, serial, and coactive theories, Journal of Mathematical Psychology, 39, 321-359 (1995) · Zbl 0865.92029
[75] Townsend, J. T.; Wenger, M. J., A theory of interactive parallel processing: New capacity measures measures and predictions for a response time inequality series, Psychological Review, 111, 1003-1035 (2004)
[76] Van Zandt, T., How to fit a response time distribution, Psychonomic Bulletin and Review, 7, 424-465 (2000)
[77] Van Zandt, T., Analysis of response time distributions, (Wixted, J.; Pashler, H., Stevens’ handbook of experimental psychology vol. 4: methodology in experimental psychology (2002), Wiley: Wiley New York), 461-516
[78] Van Zandt, T.; Ratcliff, R., Statistical mimicking of reaction time distributions: Mixtures and parameter variability, Psychonomic Bulletin and Review, 2, 20-54 (1995)
[79] Wenger, M. J.; Gibbson, B. S., Using hazard functions to assess changes in processing capacity in an attentional cuing paradigm, Journal of Experimental Psychology: Human Perception and Performance, 30, 708-719 (2004)
[80] Wenger, M. J.; Townsend, J. T., Basic response time tools for studying general processing capacity in attention, perception, and cognition, Journal of General Psychology, 127, 67-99 (2000)
[81] Wickens, T. D., On the form of the retention function: comments on Rubin and Wenzel (1996): a quantitative description of retention, Psychological Review, 105, 379-386 (1998)
[82] Wickens, T. D., Measuring the time course of retention, (Izawa, C., On human memory: evolution, progress, and reflections on the 30th anniversary of the Atkinson-Shiffrin model (1999), Erlbaum: Erlbaum Mahwah, NJ), 245-266
[83] Woodroofe, M., Estimating a distribution function with truncated data, Annals of Statistics, 13, 163-177 (1985) · Zbl 0574.62040
[84] Yang, S. N.; McConkie, G. W., Eye movement during reading: a theory of saccade initiation times, Vision Research, 41, 3567-3585 (2001)
[85] Yantis, S.; Meyer, D. E.; Smith, J. E.K., Analyses of multinomial mixture distributions: New tests for stochastic models of cognition and action, Psychological Bulletin, 110, 350-374 (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.