×

Rationalizing loop integration. (English) Zbl 1396.81194

Summary: We show that direct Feynman-parametric loop integration is possible for a large class of planar multi-loop integrals. Much of this follows from the existence of manifestly dual-conformal Feynman-parametric representations of planar loop integrals, and the fact that many of the algebraic roots associated with (e.g. Landau) leading singularities are automatically rationalized in momentum-twistor space – facilitating direct integration via partial fractioning. We describe how momentum twistors may be chosen non-redundantly to parameterize particular integrals, and how strategic choices of coordinates can be used to expose kinematic limits of interest. We illustrate the power of these ideas with many concrete cases studied through four loops and involving as many as eight particles. Detailed examples are included as supplementary material.

MSC:

81T60 Supersymmetric field theories in quantum mechanics
81U05 \(2\)-body potential quantum scattering theory
81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry

References:

[1] Kotikov, AV, Differential equations method: new technique for massive Feynman diagrams calculation, Phys. Lett., B 254, 158, (1991) · doi:10.1016/0370-2693(91)90413-K
[2] Remiddi, E., Differential equations for Feynman graph amplitudes, Nuovo Cim., A 110, 1435, (1997)
[3] Müller-Stach, S.; Weinzierl, S.; Zayadeh, R., Picard-Fuchs equations for Feynman integrals, Commun. Math. Phys., 326, 237, (2014) · Zbl 1285.81029 · doi:10.1007/s00220-013-1838-3
[4] Henn, JM, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett., 110, 251601, (2013) · doi:10.1103/PhysRevLett.110.251601
[5] Lee, RN, Reducing differential equations for multiloop master integrals, JHEP, 04, 108, (2015) · Zbl 1388.81109 · doi:10.1007/JHEP04(2015)108
[6] Meyer, C., Transforming differential equations of multi-loop Feynman integrals into canonical form, JHEP, 04, 006, (2017) · Zbl 1378.81064 · doi:10.1007/JHEP04(2017)006
[7] Dixon, LJ; Drummond, JM; Henn, JM, Bootstrapping the three-loop hexagon, JHEP, 11, 023, (2011) · Zbl 1306.81092 · doi:10.1007/JHEP11(2011)023
[8] Dixon, LJ; Drummond, JM; Hippel, M.; Pennington, J., Hexagon functions and the three-loop remainder function, JHEP, 12, 049, (2013) · Zbl 1342.81159 · doi:10.1007/JHEP12(2013)049
[9] Dixon, LJ; Drummond, JM; Duhr, C.; Pennington, J., The four-loop remainder function and multi-Regge behavior at NNLLA in planar N = 4 super-Yang-Mills theory, JHEP, 06, 116, (2014) · Zbl 1333.81238 · doi:10.1007/JHEP06(2014)116
[10] Caron-Huot, S.; Dixon, LJ; McLeod, A.; Hippel, M., Bootstrapping a five-loop amplitude using steinmann relations, Phys. Rev. Lett., 117, 241601, (2016) · doi:10.1103/PhysRevLett.117.241601
[11] Drummond, JM; Papathanasiou, G.; Spradlin, M., A symbol of uniqueness: the cluster bootstrap for the 3-loop MHV heptagon, JHEP, 03, 072, (2015) · doi:10.1007/JHEP03(2015)072
[12] Dixon, LJ; Drummond, J.; Harrington, T.; McLeod, AJ; Papathanasiou, G.; Spradlin, M., Heptagons from the steinmann cluster bootstrap, JHEP, 02, 137, (2017) · Zbl 1377.81197 · doi:10.1007/JHEP02(2017)137
[13] Li, Y.; Zhu, HX, Bootstrapping rapidity anomalous dimensions for transverse-momentum resummation, Phys. Rev. Lett., 118, (2017) · doi:10.1103/PhysRevLett.118.022004
[14] Almelid, Ø; Duhr, C.; Gardi, E.; McLeod, A.; White, CD, Bootstrapping the QCD soft anomalous dimension, JHEP, 09, 073, (2017) · Zbl 1382.81196 · doi:10.1007/JHEP09(2017)073
[15] Chicherin, D.; Henn, J.; Mitev, V., Bootstrapping pentagon functions, JHEP, 05, 164, (2018) · doi:10.1007/JHEP05(2018)164
[16] Gluza, J.; Kajda, K.; Riemann, T., AMBRE: a Mathematica package for the construction of Mellin-Barnes representations for Feynman integrals, Comput. Phys. Commun., 177, 879, (2007) · Zbl 1196.81131 · doi:10.1016/j.cpc.2007.07.001
[17] J. Blümlein et al., Non-planar Feynman integrals, Mellin-Barnes representations, multiple sums, PoS(LL2014)052 [arXiv:1407.7832] [INSPIRE].
[18] Ochman, M.; Riemann, T., Mbsums — a Mathematica package for the representation of Mellin-Barnes integrals by multiple sums, Acta Phys. Polon., B 46, 2117, (2015) · Zbl 1372.65073 · doi:10.5506/APhysPolB.46.2117
[19] Adams, L.; Weinzierl, S., Feynman integrals and iterated integrals of modular forms, Commun. Num. Theor. Phys., 12, 193, (2018) · Zbl 1393.81015 · doi:10.4310/CNTP.2018.v12.n2.a1
[20] Remiddi, E.; Tancredi, L., An elliptic generalization of multiple polylogarithms, Nucl. Phys., B 925, 212, (2017) · Zbl 1375.81109 · doi:10.1016/j.nuclphysb.2017.10.007
[21] J. Brödel, C. Duhr, F. Dulat and L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves. Part I: general formalism, JHEP05 (2018) 093 [arXiv:1712.07089] [INSPIRE].
[22] J. Brödel, C. Duhr, F. Dulat and L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves. Part II: an application to the sunrise integral, Phys. Rev.D 97 (2018) 116009 [arXiv:1712.07095] [INSPIRE].
[23] Brödel, J.; Duhr, C.; Dulat, F.; Penante, B.; Tancredi, L., Elliptic symbol calculus: from elliptic polylogarithms to iterated integrals of Eisenstein series, JHEP, 08, 014, (2018) · doi:10.1007/JHEP08(2018)014
[24] Bourjaily, JL; McLeod, AJ; Spradlin, M.; Hippel, M.; Wilhelm, M., Elliptic double-box integrals: massless scattering amplitudes beyond polylogarithms, Phys. Rev. Lett., 120, 121603, (2018) · doi:10.1103/PhysRevLett.120.121603
[25] Bourjaily, JL; He, Y-H; Mcleod, AJ; Hippel, M.; Wilhelm, M., Traintracks through Calabi-yaus: amplitudes beyond elliptic polylogarithms, Phys. Rev. Lett., 121, (2018) · doi:10.1103/PhysRevLett.121.071603
[26] F.C.S. Brown, On the periods of some Feynman integrals, arXiv:0910.0114 [INSPIRE].
[27] E. Panzer, Feynman integrals and hyperlogarithms, Ph.D. thesis, Inst. Math., Humboldt U., Berlin, Germany, (2015) [arXiv:1506.07243] [INSPIRE]. · Zbl 1344.81024
[28] Panzer, E., Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals, Comput. Phys. Commun., 188, 148, (2015) · Zbl 1344.81024 · doi:10.1016/j.cpc.2014.10.019
[29] HyperInt webpage, https://bitbucket.org/PanzerErik/hyperint/wiki/Home.
[30] Bogner, C.; Brown, F., Feynman integrals and iterated integrals on moduli spaces of curves of genus zero, Commun. Num. Theor. Phys., 09, 189, (2015) · Zbl 1316.81040 · doi:10.4310/CNTP.2015.v9.n1.a3
[31] Brown, F., The massless higher-loop two-point function, Commun. Math. Phys., 287, 925, (2009) · Zbl 1196.81130 · doi:10.1007/s00220-009-0740-5
[32] Bogner, C.; Lüders, M., Multiple polylogarithms and linearly reducible Feynman graphs, Contemp. Math., 648, 11, (2015) · Zbl 1346.81100 · doi:10.1090/conm/648/12996
[33] Panzer, E., On hyperlogarithms and Feynman integrals with divergences and many scales, JHEP, 03, 071, (2014) · doi:10.1007/JHEP03(2014)071
[34] Bourjaily, JL; Trnka, J., Local integrand representations of all two-loop amplitudes in planar SYM, JHEP, 08, 119, (2015) · Zbl 1388.81710 · doi:10.1007/JHEP08(2015)119
[35] J.L. Bourjaily, L.J. Dixon, F. Dulat and E. Panzer, Manifestly dual-conformal loop integration, to appear. · Zbl 1415.81040
[36] Parker, D.; Scherlis, A.; Spradlin, M.; Volovich, A., Hedgehog bases for A_{n} cluster and an application to six-point amplitudes, JHEP, 11, 136, (2015) · Zbl 1388.81186 · doi:10.1007/JHEP11(2015)136
[37] Hodges, AP, Crossing and twistor diagrams, Twistor Newslet., 5, 4, (1977)
[38] Hodges, A., Eliminating spurious poles from gauge-theoretic amplitudes, JHEP, 05, 135, (2013) · Zbl 1342.81291 · doi:10.1007/JHEP05(2013)135
[39] Arkani-Hamed, N.; Bourjaily, JL; Cachazo, F.; Caron-Huot, S.; Trnka, J., The all-loop integrand for scattering amplitudes in planar N = 4 SYM, JHEP, 01, 041, (2011) · Zbl 1214.81141 · doi:10.1007/JHEP01(2011)041
[40] Mason, L.; Skinner, D., Amplitudes at weak coupling as polytopes in ads_{5}, J. Phys., A 44, 135401, (2011) · Zbl 1213.81202
[41] Arkani-Hamed, N.; Bourjaily, JL; Cachazo, F.; Hodges, A.; Trnka, J., A note on polytopes for scattering amplitudes, JHEP, 04, 081, (2012) · Zbl 1348.81339 · doi:10.1007/JHEP04(2012)081
[42] J. Henn, E. Herrmann and J. Parra-Martinez, Bootstrapping two-loop Feynman integrals for planar N = 4 SYM, arXiv:1806.06072 [INSPIRE].
[43] Drummond, JM; Henn, J.; Smirnov, VA; Sokatchev, E., Magic identities for conformal four-point integrals, JHEP, 01, 064, (2007) · doi:10.1088/1126-6708/2007/01/064
[44] Bern, Z.; etal., The two-loop six-gluon MHV amplitude in maximally supersymmetric Yang-Mills theory, Phys. Rev., D 78, (2008)
[45] Drummond, JM; Henn, J.; Korchemsky, GP; Sokatchev, E., Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys., B 815, 142, (2009) · Zbl 1194.81316 · doi:10.1016/j.nuclphysb.2009.02.015
[46] Bourjaily, JL; Caron-Huot, S.; Trnka, J., Dual-conformal regularization of infrared loop divergences and the chiral box expansion, JHEP, 01, 001, (2015) · doi:10.1007/JHEP01(2015)001
[47] Hodges, A., The box integrals in momentum-twistor geometry, JHEP, 08, 051, (2013) · Zbl 1342.81190 · doi:10.1007/JHEP08(2013)051
[48] Simmons-Duffin, D., Projectors, shadows and conformal blocks, JHEP, 04, 146, (2014) · Zbl 1333.83125 · doi:10.1007/JHEP04(2014)146
[49] Bartels, J.; Schomerus, V.; Sprenger, M., The Bethe roots of Regge cuts in strongly coupled N = 4 SYM theory, JHEP, 07, 098, (2015) · Zbl 1388.81907 · doi:10.1007/JHEP07(2015)098
[50] Goncharov, AB, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett., 5, 497, (1998) · Zbl 0961.11040 · doi:10.4310/MRL.1998.v5.n4.a7
[51] F.C.S. Brown, Multiple zeta values and periods of moduli spaces\( {\mathfrak{M}}_{0,n}(R) \), Annales Sci. École Norm. Sup.42 (2009) 371 [math.AG/0606419] [INSPIRE]. · Zbl 1216.11079
[52] Goncharov, AB, A simple construction of Grassmannian polylogarithms, Adv. Math., 241, 79, (2013) · Zbl 1360.11077 · doi:10.1016/j.aim.2013.03.018
[53] A. Postnikov, Total positivity, Grassmannians and networks, math.CO/0609764 [INSPIRE].
[54] L.K. Williams, Enumeration of totally positive Grassmann cells, Adv. Math.190 (2005) 319 [math.CO/0307271]. · Zbl 1064.05150
[55] Knutson, A.; Lam, T.; Speyer, DE, Positroid varieties: juggling and geometry, Compos. Math., 149, 1710, (2013) · Zbl 1330.14086 · doi:10.1112/S0010437X13007240
[56] Arkani-Hamed, N.; Bourjaily, J.; Cachazo, F.; Trnka, J., Unification of residues and Grassmannian dualities, JHEP, 01, 049, (2011) · Zbl 1214.81267 · doi:10.1007/JHEP01(2011)049
[57] N. Arkani-Hamed et al., Scattering amplitudes and the positive Grassmannian, arXiv:1212.5605. · Zbl 0391.76060
[58] J.L. Bourjaily, Positroids, plabic graphs and scattering amplitudes in Mathematica, arXiv:1212.6974 [INSPIRE].
[59] Muller, G.; Speyer, DE, The twist for positroid varieties, Proc. Lond. Math. Soc., 115, 1014, (2017) · Zbl 1408.14154 · doi:10.1112/plms.12056
[60] Bourjaily, JL; Franco, S.; Galloni, D.; Wen, C., Stratifying on-shell cluster varieties: the geometry of non-planar on-shell diagrams, JHEP, 10, 003, (2016) · Zbl 1390.81569 · doi:10.1007/JHEP10(2016)003
[61] N. Arkani-Hamed et al., Grassmannian geometry of scattering amplitudes, Cambridge University Press, Cambridge, U.K., (2016). · Zbl 1365.81004 · doi:10.1017/CBO9781316091548
[62] Golden, J.; Goncharov, AB; Spradlin, M.; Vergu, C.; Volovich, A., Motivic amplitudes and cluster coordinates, JHEP, 01, 091, (2014) · doi:10.1007/JHEP01(2014)091
[63] Golden, J.; Paulos, MF; Spradlin, M.; Volovich, A., Cluster polylogarithms for scattering amplitudes, J. Phys., A 47, 474005, (2014) · Zbl 1304.81123
[64] Duca, V.; etal., Multi-Regge kinematics and the moduli space of Riemann spheres with marked points, JHEP, 08, 152, (2016) · Zbl 1390.81627 · doi:10.1007/JHEP08(2016)152
[65] Drummond, J.; Foster, J.; Gürdoǧan, Ö, Cluster adjacency properties of scattering amplitudes in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett., 120, 161601, (2018) · doi:10.1103/PhysRevLett.120.161601
[66] Arkani-Hamed, N.; Bourjaily, JL; Cachazo, F.; Trnka, J., Local integrals for planar scattering amplitudes, JHEP, 06, 125, (2012) · Zbl 1348.81339 · doi:10.1007/JHEP06(2012)125
[67] Drummond, JM; Henn, JM; Trnka, J., New differential equations for on-shell loop integrals, JHEP, 04, 083, (2011) · Zbl 1250.81064 · doi:10.1007/JHEP04(2011)083
[68] Goncharov, AB; Spradlin, M.; Vergu, C.; Volovich, A., Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett., 105, 151605, (2010) · doi:10.1103/PhysRevLett.105.151605
[69] Dixon, LJ; Drummond, JM; Henn, JM, Analytic result for the two-loop six-point NMHV amplitude in N = 4 super Yang-Mills theory, JHEP, 01, 024, (2012) · Zbl 1306.81093 · doi:10.1007/JHEP01(2012)024
[70] Dixon, LJ; Duhr, C.; Pennington, J., Single-valued harmonic polylogarithms and the multi-Regge limit, JHEP, 10, 074, (2012) · doi:10.1007/JHEP10(2012)074
[71] L.J. Dixon, J.M. Drummond, C. Duhr, M. von Hippel and J. Pennington, Bootstrapping six-gluon scattering in planar N = 4 super-Yang-Mills theory, PoS(LL2014)077 [arXiv:1407.4724] [INSPIRE].
[72] Dixon, LJ; Hippel, M., Bootstrapping an NMHV amplitude through three loops, JHEP, 10, 065, (2014) · doi:10.1007/JHEP10(2014)065
[73] Dixon, LJ; Hippel, M.; McLeod, AJ, The four-loop six-gluon NMHV ratio function, JHEP, 01, 053, (2016) · doi:10.1007/JHEP01(2016)053
[74] Dixon, LJ; Hippel, M.; McLeod, AJ; Trnka, J., Multi-loop positivity of the planar N = 4 SYM six-point amplitude, JHEP, 02, 112, (2017) · Zbl 1377.81101 · doi:10.1007/JHEP02(2017)112
[75] Caron-Huot, S.; Dixon, LJ; Hippel, M.; McLeod, AJ; Papathanasiou, G., The double pentaladder integral to all orders, JHEP, 07, 170, (2018) · Zbl 1395.81276 · doi:10.1007/JHEP07(2018)170
[76] B. Basso, A. Sever and P. Vieira, Space-time S-matrix and flux tube S-matrix II. Extracting and matching data, JHEP01 (2014) 008 [arXiv:1306.2058] [INSPIRE].
[77] Bourjaily, JL; Herrmann, E.; Trnka, J., Prescriptive unitarity, JHEP, 06, 059, (2017) · Zbl 1380.81388 · doi:10.1007/JHEP06(2017)059
[78] J.L. Bourjaily, A.J. McLeod, E. Panzer, M. von Hippel and M. Wilhelm, in progress.
[79] D.J. Broadhurst, J. Fleischer and O.V. Tarasov, Two loop two point functions with masses: asymptotic expansions and Taylor series, in any dimension, Z. Phys.C 60 (1993) 287 [hep-ph/9304303] [INSPIRE].
[80] Bloch, S.; Vanhove, P., The elliptic dilogarithm for the sunset graph, J. Number Theor., 148, 328, (2015) · Zbl 1319.81044 · doi:10.1016/j.jnt.2014.09.032
[81] Broadhurst, D., Feynman integrals, L-series and Kloosterman moments, Commun. Num. Theor. Phys., 10, 527, (2016) · Zbl 1362.81072 · doi:10.4310/CNTP.2016.v10.n3.a3
[82] Bogner, C.; Schweitzer, A.; Weinzierl, S., Analytic continuation and numerical evaluation of the kite integral and the equal mass sunrise integral, Nucl. Phys., B 922, 528, (2017) · Zbl 1373.81293 · doi:10.1016/j.nuclphysb.2017.07.008
[83] Bloch, S.; Kerr, M.; Vanhove, P., A Feynman integral via higher normal functions, Compos. Math., 151, 2329, (2015) · Zbl 1365.81090 · doi:10.1112/S0010437X15007472
[84] Bloch, S.; Kerr, M.; Vanhove, P., Local mirror symmetry and the sunset Feynman integral, Adv. Theor. Math. Phys., 21, 1373, (2017) · Zbl 1390.14123 · doi:10.4310/ATMP.2017.v21.n6.a1
[85] Golden, J.; Spradlin, M., An analytic result for the two-loop seven-point MHV amplitude in N = 4 SYM, JHEP, 08, 154, (2014) · doi:10.1007/JHEP08(2014)154
[86] Caron-Huot, S.; He, S., Jumpstarting the all-loop S-matrix of planar N = 4 super Yang-Mills, JHEP, 07, 174, (2012) · Zbl 1397.81347 · doi:10.1007/JHEP07(2012)174
[87] V.V. Fock and A.B. Goncharov, Cluster ensembles, quantization and the dilogarithm, Annales Sci. École Norm. Sup.42 (2009) 865 [math.AG/0311245] [INSPIRE]. · Zbl 1180.53081
[88] V.V. Fock and A.B. Goncharov, Cluster χ-varieties, amalgamation and Poisson-Lie groups, in Algebraic geometry and number theory, Birkhäuser, Boston, MA, U.S.A., (2006), pg. 27 [math.RT/0508408]. · Zbl 1162.22014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.