×

Splitting and parameter dependence in the category of \(\mathrm{PLH}\) spaces. (English) Zbl 1423.46100

[Note: Some diagrams below cannot be displayed correctly in the web version. Please use the PDF version for correct display.]
The central concept of the paper is to provide a splitting theory in the category of the so-called PLH-spaces, i.e., projective limits of inductive limits of Hilbert spaces. The main problem is to characterize those pairs \((F,E)\) of PLH-spaces such that, for any PLH-space \(G\), the short exact sequence \[ \begin{tikzcd} 0\arrow[r] & F\arrow[r, "f"] & G\arrow[r, "g"] & E\arrow[r] & 0 \end{tikzcd} \] splits. The results of the paper should be compared with their analogues obtained in the category of PLS-spaces by Bonet, Domański, Frerick, Langenbruch, Vogt, Wengenroth and others.
The main issue is a proper notion of exactness. The authors call the above short sequence exact if \(f\) is a topological embedding, \(g\) is surjective and open and \(\operatorname{im} f=\ker g\). This approach allows the authors to drop one of the crucial assumptions in the splitting business, namely, they do not need (in general) nuclearity of the spaces involved. This is an interesting novelty in the splitting theory.
The paper is divided into five parts. Sections 1 and 2 are ‘Introduction’ and ‘Preliminaries’. Section 3 is the most technical one. Here, the authors obtain their splitting results for specific pairs \((F,E)\). In the next section, their methods are applied to get parameter dependence results. This part, however, requires some nuclearity assumptions due to the fact that some interpolation techniques have to be used. The last section is devoted to applications in the theory of partial differential operators.
As for the last comment, the reviewer would like to point out that the paper is dedicated to the memory of Paweł Domański, a great Polish mathematician who passed away – far too early – in 2016. Paweł Domański was also a supervisor of the reviewer’s Ph.D. Thesis, and the reviewer wishes to thank the authors for keeping Paweł Domański in the memory of the mathematical community.

MSC:

46M18 Homological methods in functional analysis (exact sequences, right inverses, lifting, etc.)
46A13 Spaces defined by inductive or projective limits (LB, LF, etc.)
46F05 Topological linear spaces of test functions, distributions and ultradistributions
35E20 General theory of PDEs and systems of PDEs with constant coefficients
35R20 Operator partial differential equations (= PDEs on finite-dimensional spaces for abstract space valued functions)
46A63 Topological invariants ((DN), (\(\Omega\)), etc.) for locally convex spaces
Full Text: DOI

References:

[1] Bierstedt, K.D.: An introduction to locally convex inductive limits. In: Functional Analysis and Its Applications (Nice, 1986). ICPAM Lecture Notes, pp. 35-133. World Scientific Publishing, Singapore (1988) · Zbl 0786.46001
[2] Bonet, J., Domański, P.: Real analytic curves in Fréchet spaces and their duals. Monatsh. Math. 126(1), 13-36 (1998) · Zbl 0918.46034
[3] Bonet, J., Domański, P.: Parameter dependence of solutions of partial differential equations in spaces of real analytic functions. Proc. Am. Math. Soc. 129(2), 495-503 (2001) (electronic) · Zbl 0959.35016
[4] Bonet, J., Domański, P.: Parameter dependence of solutions of differential equations on spaces of distributions and the splitting of short exact sequences. J. Funct. Anal. 230(2), 329-381 (2006) · Zbl 1094.46006
[5] Bonet, J., Domański, P.: The structure of spaces of quasianalytic functions of Roumieu type. Arch. Math. (Basel) 89(5), 430-441 (2007) · Zbl 1147.46024
[6] Bonet, J., Domański, P.: The splitting of exact sequences of PLS-spaces and smooth dependence of solutions of linear partial differential equations. Adv. Math. 217(2), 561-585 (2008) · Zbl 1144.46057
[7] Bonet, J., Domański, P., Vogt, D.: Interpolation of vector-valued real analytic functions. J. Lond. Math. Soc. 66(2), 407-420 (2002) · Zbl 1027.46048
[8] Browder, F.E.: Analyticity and partial differential equations. I. Am. J. Math. 84, 666-710 (1962) · Zbl 0124.31004
[9] Bühler, T.: Exact categories. Expo. Math. 28(1), 1-69 (2010) · Zbl 1192.18007
[10] Defant, A., Floret, K.: Tensor Norms and Operator Ideals. North-Holland Mathematics Studies, vol. 176. North-Holland Publishing Co., Amsterdam (1993) · Zbl 0774.46018
[11] Dierolf, B.: Splitting theory for PLH-spaces. Ph.D. thesis, University of Trier. http://ubt.opus.hbz-nrw.de/volltexte/2014/869/pdf/DissertationBernhardDierolf.pdf (2014)
[12] Dierolf, B.: The Hilbert tensor product and inductive limits. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM (2015). doi:10.1007/s13398-015-0229-3 · Zbl 1344.46002
[13] Dierolf, B., Sieg, D.: A homological approach to the splitting theory for PLS \[_w\] w-spaces. J. Math. Anal. Appl. 433(2), 1305-1328 (2016) · Zbl 1345.18008
[14] Domański, P.: Classical PLS-spaces: spaces of distributions, real analytic functions and their relatives. In: Orlicz Centenary Volume, Banach Center Publ., vol. 64, pp. 51-70. Polish Academy of Sciences, Warsaw (2004) · Zbl 1061.46003
[15] Domański, P.: Real analytic parameter dependence of solutions of differential equations. Rev. Mat. Iberoam. 26(1), 175-238 (2010) · Zbl 1207.35050
[16] Domański, P.: Real analytic parameter dependence of solutions of differential equations over Roumieu classes. Funct. Approx. Comment. Math. 44(part 1), 79-109 (2011) · Zbl 1221.35050
[17] Domański, P., Frerick, L., Vogt, D.: Fréchet quotients of spaces of real-analytic functions. Studia Math. 159(2), 229-245 (2003) · Zbl 1062.46023
[18] Domański, P., Mastyło, M.: Characterization of splitting for Fréchet-Hilbert spaces via interpolation. Math. Ann. 339(2), 317-340 (2007) · Zbl 1132.46043
[19] Domański, P., Vogt, D.: Distributional complexes split for positive dimensions. J. Reine Angew. Math. 522, 63-79 (2000) · Zbl 0962.46026
[20] Domański, P., Vogt, D.: The space of real-analytic functions has no basis. Studia Math. 142(2), 187-200 (2000) · Zbl 0990.46015
[21] Domański, P., Vogt, D.: A splitting theory for the space of distributions. Studia Math. 140(1), 57-77 (2000) · Zbl 0973.46067
[22] Frerick, L.: On vector valued sequence spaces. Ph.D. thesis, University of Trier (1994) · Zbl 0881.46009
[23] Frerick, L., Kalmes, T.: Some results on surjectivity of augmented semi-elliptic differential operators. Math. Ann. 347(1), 81-94 (2010) · Zbl 1185.35033
[24] Frerick, L., Kunkle, D., Wengenroth, J.: The projective limit functor for spectra of webbed spaces. Studia Math. 158(2), 117-129 (2003) · Zbl 1039.46001
[25] Frerick, L., Wengenroth, J.: A sufficient condition for vanishing of the derived projective limit functor. Arch. Math. (Basel) 67(4), 296-301 (1996) · Zbl 0859.46046
[26] Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires, vol. 16, p. 140. Memoirs of the American Mathematical Society, Providence, Rhode Island (1955) · Zbl 0123.30301
[27] Hermanns, V.: Zur Existenz von Rechtsinversen linearer partieller Differentialoperatoren mit konstanten Koeffizienten auf \[{B}_{p,\kappa }^{loc}({\Omega })\] Bp,κloc(Ω)-Räumen. Ph.D. thesis, Bergische Universität Wuppertal. http://d-nb.info/975806661/34 (2005)
[28] Hörmander, L.: The Analysis of Linear Partial Differential Operators. II. Differential Operators with Constant Coefficients. Classics in Mathematics. Springer, Berlin (2005) (Reprint of the 1983 original) · Zbl 1062.35004
[29] Hörmander, L.: The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis. Classics in Mathematics. Springer, Berlin (2003) · Zbl 1028.35001
[30] Jarchow, H.: Locally Convex Spaces. Mathematische Leitfäden [Mathematical Textbooks]. B. G. Teubner, Stuttgart (1981) · Zbl 0466.46001
[31] Kalmes, T.: The augmented operator of a surjective partial differential operator with constant coefficients need not be surjective. Bull. Lond. Math. Soc. 44(3), 610-614 (2012) · Zbl 1252.35119
[32] Köthe, G.: Topological Vector Spaces. II. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 237. Springer, New York (1979) · Zbl 0417.46001
[33] Kunkle, D.: Splitting of power series spaces of (PLS)-type. Ph.D. thesis, Bergische Universität Wuppertal. http://elpub.bib.uni-wuppertal.de/servlets/DerivateServlet/Derivate-333/d070106.pdf (2001)
[34] Langenbruch, M.: Characterization of surjective partial differential operators on spaces of real analytic functions. Studia Math. 162(1), 53-96 (2004) · Zbl 1073.35054
[35] Mantlik, F.: Linear equations depending differentiably on a parameter. Integral Equ. Oper. Theory 13(2), 231-250 (1990) · Zbl 0704.47010
[36] Mantlik, F.: Partial differential operators depending analytically on a parameter. Ann. Inst. Fourier (Grenoble) 41(3), 577-599 (1991) · Zbl 0729.35011
[37] Mantlik, F.: Fundamental solutions for hypoelliptic differential operators depending analytically on a parameter. Trans. Am. Math. Soc. 334(1), 245-257 (1992) · Zbl 0785.35008
[38] Meise, R., Vogt, D.: Introduction to Functional Analysis. Oxford Graduate Texts in Mathematics, vol. 2. The Clarendon Press, Oxford University Press, New York (Translated from the German by M. S. Ramanujan and revised by the authors) (1997) · Zbl 0924.46002
[39] Mitchell, B.: Theory of Categories. Pure and Applied Mathematics, vol. XVII. Academic, New York (1965) · Zbl 0136.00604
[40] Murphy, G.J.: \[C^*C\]∗-Algebras and Operator Theory. Academic, Boston (1990) · Zbl 0714.46041
[41] Palamodov, V.P.: Homological methods in the theory of locally convex spaces. Uspekhi Mat. Nauk 26 (1), 3-66 (in Russian) (English transl., Russian Math. Surveys 26(1), 1-64 (1971)) (1971) · Zbl 0247.46070
[42] Palamodov, V.P.: The projective limit functor in the category of topological linear spaces. Mat. Sb. 75, 567-603 (in Russian) (English transl., Math. USSR. Sbornik 17, 189-315 (1972)) (1968)
[43] Pietsch, A.: Nuclear Locally Convex Spaces. Springer, New York (Translated from the second German edition by William H. Ruckle, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 66) (1972) · Zbl 0308.47024
[44] Piszczek, K.: On a property of PLS-spaces inherited by their tensor products. Bull. Belg. Math. Soc. Simon Stevin 17(1), 155-170 (2010) · Zbl 1205.46002
[45] Retakh, V.S.: The subspaces of a countable inductive limit. Dokl. Akad. Nauk SSSR 194, 1277-1279 (1970) · Zbl 0213.12504
[46] Schwartz, L.: Théorie des distributions à valeurs vectorielles. I. Ann. Inst. Fourier Grenoble 7, 1-141 (1957) · Zbl 0089.09601
[47] Schwartz, L.: Théorie des distributions à valeurs vectorielles. II. Ann. Inst. Fourier Grenoble 8, 1-209 (1958) · Zbl 0089.09801
[48] Sieg, D.: A homological approach to the splitting theory of PLS-spaces. Ph.D. thesis, University of Trier. http://ubt.opus.hbz-nrw.de/volltexte/2010/572/pdf/SiegDiss.pdf (2010)
[49] Trèves, F.: Fundamental solutions of linear partial differential equations with constant coefficients depending on parameters. Am. J. Math. 84, 561-577 (1962) · Zbl 0121.32201
[50] Trèves, F.: Un théorème sur les équations aux dérivées partielles à coefficients constants dépendant de paramètres. Bull. Soc. Math. Fr. 90, 473-486 (1962) · Zbl 0113.30901
[51] Valdivia, M.: Representations of the spaces \[{\fancyscript{D}}(\Omega )\] D(Ω) and \[{\fancyscript{D}}^{\prime } (\Omega )\] D′(Ω). Rev. Real Acad. Cienc. Exact. Fís. Natur. Madr. 72(3), 385-414 (1978) · Zbl 0404.46021
[52] Varol, O.: Kriterien für Tor \[^1_{\alpha }\] α1(E,F)= 0 für (DF)- und Frécheträume. Ph.D. thesis, Bergische Universtät Wuppertal. http://elpub.bib.uni-wuppertal.de/edocs/dokumente/fb07/diss2002/varol/d070205.pdf (2002)
[53] Varol, O.: On the derived tensor product functors for (DF)- and Fréchet spaces. Studia Math. 180(1), 41-71 (2007) · Zbl 1138.46045
[54] Vogt, D.: Vektorwertige Distributionen als Randverteilungen holomorpher Funktionen. Manuscr. Math. 17(3), 267-290 (1975) · Zbl 0349.46040
[55] Vogt, D.: On the solvability of \[{P}({D})f = gP\](D)f=g for vector valued functions. RIMS Kokyoroku 508, 168-182 (1983)
[56] Vogt, D.: Sequence space representations of spaces of test functions and distributions. In: Functional Analysis, Holomorphy, and Approximation Theory (Rio de Janeiro, 1979). Lecture Notes in Pure and Applied Mathematics, vol. 83, pp. 405-443. Dekker, New York (1983) · Zbl 0519.46044
[57] Vogt, D.: On the functors \[{\text{ Ext }}^1(E, F)\] Ext1(E,F) for Fréchet spaces. Studia Math. 85(2), 163-197 (1987) · Zbl 0651.46001
[58] Vogt, D.: Topics on projective spectra of (LB)-spaces. In: Advances in the Theory of Fréchet Spaces (Istanbul, 1988). NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 287, pp. 11-27. Kluwer Academic Publishers, Dordrecht (1989) · Zbl 0711.46006
[59] Vogt, D.: Regularity properties of (LF)-spaces. In: Progress in Functional Analysis (Peníscola, 1990). North-Holland Mathematics Studies, vol. 170, pp. 57-84. North-Holland, Amsterdam (1992) · Zbl 0779.46005
[60] Vogt, D.: Fréchet valued real analytic functions. Bull. Soc. Roy. Sci. Liège 73(2-3), 155-170 (2004) · Zbl 1094.46043
[61] Vogt, D.: Invariants and spaces of zero solutions of linear partial differential operators. Arch. Math. (Basel) 87(2), 163-171 (2006) · Zbl 1104.46004
[62] Vogt, D.: On the splitting relation for Fréchet-Hilbert spaces. Funct. Approx. Comment. Math. 44(part 2), 215-225 (2011) · Zbl 1230.46005
[63] Vogt, D., Wagner, M.J.: Charakterisierung der Quotientenräume von \[s\] s und eine Vermutung von Martineau. Studia Math. 67(3), 225-240 (1980) · Zbl 0464.46010
[64] Weibel, C.A.: An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics, vol. 38. Cambridge University Press, Cambridge (1994) · Zbl 0797.18001
[65] Wengenroth, J.: Retractive (LF)-spaces. Ph.D. thesis, University of Trier (1995) · Zbl 0974.46500
[66] Wengenroth, J.: Acyclic inductive spectra of Fréchet spaces. Studia Math. 120(3), 247-258 (1996) · Zbl 0863.46002
[67] Wengenroth, J.: A splitting theorem for subspaces and quotients of \[\fancyscript{D}^{\prime }\] D′. Bull. Pol. Acad. Sci. Math. 49(4), 349-354 (2001) · Zbl 1031.46083
[68] Wengenroth, J.: Derived Functors in Functional Analysis. Lecture Notes in Mathematics, vol. 1810. Springer, Berlin (2003) · Zbl 1031.46001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.