×

Capillary instability of a two-layer annular film: an airway closure model. (English) Zbl 1509.76033

Summary: Capillary instability of a two-layer liquid film lining a rigid tube is studied computationally as a model for liquid plug formation and closure of human airways. The two-layer liquid consists of a serous layer, also called the periciliary liquid layer, at the inner side and a mucus layer at the outer side. Together, they form the airway surface liquid lining the airway wall and surrounding an air core. Liquid plug formation occurs due to Plateau-Rayleigh instability when the liquid film thickness exceeds a critical value. Numerical simulations are performed for the entire closure process, including the pre- and post-coalescence phases. The mechanical stresses and their gradients on the airway wall are investigated for physiologically relevant ranges of the mucus-to-serous thickness ratio, the viscosity ratio, and the air-mucus and serous-mucus surface tensions encompassing healthy and pathological conditions of a typical adult human lung. The growth rate of the two-layer model is found to be higher in comparison with a one-layer equivalent configuration. This leads to a much sooner closure in the two-layer model than that in the corresponding one-layer model. Moreover, it is found that the serous layer generally provides an effective protection to the pulmonary epithelium against high shear stress excursions and their gradients. A linear stability analysis is also performed, and the results are found to be in good qualitative agreement with the simulations. Finally, a secondary coalescence that may occur during the post-closure phase is investigated.

MSC:

76E17 Interfacial stability and instability in hydrodynamic stability
76A20 Thin fluid films
76D45 Capillarity (surface tension) for incompressible viscous fluids
76D05 Navier-Stokes equations for incompressible viscous fluids
76Z05 Physiological flows
76M20 Finite difference methods applied to problems in fluid mechanics

Software:

Basilisk

References:

[1] Almstrand, A.C., Bake, B., Ljungström, E., Larsson, P., Bredberg, A., Mirgorodskaya, E. & Olin, A.C.2010Effect of airway opening on production of exhaled particles. J. Appl. Physiol.108 (3), 584-588.
[2] Anthonisen, N.R., Danson, J., Robertson, P.C. & Ross, W.R.D.1969Airway closure as a function of age. Respir. Physiol.8 (July), 58-65.
[3] Appelberg, J., Pavlenko, T., Bergman, H., Rothen, H.U. & Hedenstierna, G.2007Lung aeration during sleep. Chest131 (1), 122-129.
[4] Bake, B., Larsson, P., Ljungkvist, G., Ljungström, E. & Olin, A.C.2019Exhaled particles and small airways. Respir. Res.20 (1), 8.
[5] Balmforth, N.J., Frigaard, I.A. & Ovarlez, G.2014Yielding to stress: recent developments in viscoplastic fluid mechanics. Annu. Rev. Fluid Mech.46, 121-146. · Zbl 1297.76008
[6] Bian, S., Tai, C.F., Halpern, D., Zheng, Y. & Grotberg, J.B.2010Experimental study of flow fields in an airway closure model. J. Fluid Mech.647, 391-402. · Zbl 1189.76014
[7] Bilek, A.M., Dee, K.C. & Gaver, D.P.2003Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening. J. Appl. Physiol.94 (2), 770-783.
[8] Bode, F.R., Dosman, J., Martin, R.R., Ghezzo, H. & Macklem, P.T.1976Age and sex differences in lung elasticity, and in closing capacity in nonsmokers. J. Appl. Physiol.41 (2), 129-135.
[9] Boucher, R.C.2007Airway surface dehydration in cystic fibrosis: pathogenesis and therapy. Annu. Rev. Med.58 (1), 157-170.
[10] Bourouiba, L.2020Turbulent gas clouds and respiratory pathogen emissions: potential implications for reducing transmission of COVID-19. J. Am. Med. Assoc.323 (18), 1837-1838.
[11] Breatnach, E., Abbott, G.C. & Fraser, R.G.1984Dimensions of the normal human trachea. Am. J. Roentgenol.142 (5), 903-906.
[12] Burger, E.J. & Macklem, P.1968Airway closure: demonstration by breathing 100 percent O_2 at low lung volumes and by N_2 washout. J. Appl. Physiol.25 (2), 139-148.
[13] Bustamante-Marin, X.M. & Ostrowski, L.E.2017Cilia and mucociliary clearance. Cold Spring Harbor Perspect. Biol.9 (4), a028241.
[14] Button, B., Cai, L.H., Ehre, C., Kesimer, M., Hill, D.B., Sheehan, J.K., Boucher, R.C. & Rubinstein, M.2012A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia. Science337 (6097), 937-941.
[15] Chorin, A.J.1968Numerical solution of the Navier-Stokes equations. Maths Comput.22 (104), 745-762. · Zbl 0198.50103
[16] Crawford, A.B.H., Cotton, D.J., Paiva, M. & Engel, L.A.1989Effect of airway closure on ventilation distribution. J. Appl. Physiol.66 (6), 2511-2515.
[17] Crystal, R.G.1997The Lung: Scientific Foundations. Lippincott.
[18] Dietze, G.F. & Ruyer-Quil, C.2015Films in narrow tubes. J. Fluid Mech.762, 68-109. · Zbl 1335.76011
[19] Donnelly, L.E., Newton, R., Kennedy, G.E., Fenwick, P.S., Leung, R.H.F., Ito, K., Russell, R.E.K. & Barnes, P.J.2004Anti-inflammatory effects of resveratrol in lung epithelial cells: molecular mechanisms. Am. J. Physiol. Lung Cell. Mol. Physiol.287 (4), L774-L783.
[20] Dushianthan, A., Cusack, R., Goss, V., Postle, A.D. & Grocott, M.P.W.2012Clinical review: exogenous surfactant therapy for acute lung injury/acute respiratory distress syndrome – where do we go from here?Crit. Care16 (6), 1-11.
[21] Engel, L.A., Grassino, A. & Anthonisen, N.R.1975Demonstration of airway closure in man. J. Appl. Physiol.38 (6), 1117-1125.
[22] Everett, D.H. & Haynes, J.M.1972Model studies of capillary condensation. J. Colloid Interface Sci.38 (1), 125-137.
[23] Fehrenbach, H.2001Alveolar epithelial type II cell: defender of the alveolus revisited. Respir. Res.2 (1), 1-20.
[24] Freishtat, R.J., Watson, A.M., Benton, A.S., Iqbal, S.F., Pillai, D.K., Rose, M.C. & Hoffman, E.P.2011Asthmatic airway epithelium is intrinsically inflammatory and mitotically dyssynchronous. Am. J. Respir. Cell. Mol. Biol.44 (6), 863-869.
[25] Fujioka, H. & Grotberg, J.B.2004Steady propagation of a liquid plug in a two-dimensional channel. Trans. ASME J. Biomech. Engng126 (5), 567-577.
[26] Fujioka, H. & Grotberg, J.B.2005The steady propagation of a surfactant-laden liquid plug in a two-dimensional channel. Phys. Fluids17 (8), 1-17. · Zbl 1187.76169
[27] Fujiwara, T., Chida, S., Watabe, Y., Maeta, H., Morita, T. & Abe, T.1980Artificial surfactant therapy in hyaline-membrane disease. Lancet315 (8159), 55-59.
[28] Gauglitz, P.A. & Radke, C.J.1988An extended evolution equation for liquid film breakup in cylindrical capillaries. Chem. Engng Sci.43 (7), 1457-1465.
[29] Goldsmith, H.L. & Mason, S.G.1963The flow of suspensions through tubes. II. Single large bubbles. J. Colloid Sci.18 (3), 237-261.
[30] Goren, S.L.1962The instability of an annular thread of fluid. J. Fluid Mech.12 (2), 309-319. · Zbl 0105.39602
[31] Gregory, T.J., Longmore, W.J., Moxley, M.A., Whitsett, J.A., Reed, C.R., Fowler, A.A., Hudson, L.D., Maunder, R.J., Crim, C. & Hyers, T.M.1991Surfactant chemical composition and biophysical activity in acute respiratory distress syndrome. J. Clin. Invest.88 (6), 1976-1981.
[32] Griese, M., Essl, R., Schmidt, R., Rietschel, E., Ratjen, F., Ballmann, M. & Paul, K.2004Pulmonary surfactant, lung function, and endobronchial inflammation in cystic fibrosis. Am. J. Respir. Crit. Care Med.170 (9), 1000-1005.
[33] Grotberg, J.B.2011Respiratory fluid mechanics. Phys. Fluids23 (2), 021301.
[34] Grotberg, J.B.2019Crackles and wheezes: agents of injury?Ann. Am. Thorac. Soc.16 (8), 967-969.
[35] Guo, H. & Kanso, E.2017A computational study of mucociliary transport in healthy and diseased environments. Eur. J. Comput. Mech.26 (1-2), 4-30.
[36] Halpern, D., Fujioka, H. & Grotberg, J.B.2010The effect of viscoelasticity on the stability of a pulmonary airway liquid layer. Phys. Fluids22 (1), 011901. · Zbl 1183.76234
[37] Halpern, D., Fujioka, H., Takayama, S. & Grotberg, J.B.2008Liquid and surfactant delivery into pulmonary airways. Respir. Physiol. Neurobiol.163 (1-3), 222-231.
[38] Halpern, D. & Grotberg, J.B.1992Fluid-elastic instabilities of liquid-lined flexible tubes. J. Fluid Mech.244, 615-632. · Zbl 0775.76054
[39] Halpern, D. & Grotberg, J.B.1993Surfactant effects on fluid-elastic instabilities of liquid-lined flexible tubes: a model of airway closure. Trans. ASME J. Biomech. Engng115 (3), 271-277.
[40] Halpern, D. & Grotberg, J.B.2003Nonlinear saturation of the Rayleigh instability due to oscillatory flow in a liquid-lined tube. J. Fluid Mech.492 (492), 251-270. · Zbl 1063.76557
[41] Hammond, P.S.1983Nonlinear adjustment of a thin annular film of viscous fluid surrounding a thread of another within a circular cylindrical pipe. J. Fluid Mech.137, 363-384. · Zbl 0571.76046
[42] Haslbeck, K., Schwarz, K., Hohlfeld, J.M., Seume, J.R. & Koch, W.2010Submicron droplet formation in the human lung. J. Aerosol Sci.41 (5), 429-438.
[43] Heil, M., Hazel, A.L. & Smith, J.A.2008The mechanics of airway closure. Respir. Physiol. Neurobiol.163 (1-3), 214-221.
[44] Hermans, E., Bhamla, M.S., Kao, P., Fuller, G.G. & Vermant, J.2015Lung surfactants and different contributions to thin film stability. Soft Matt.11 (41), 8048-8057.
[45] Hoshino, T., Nakamura, H., Okamoto, M., Kato, S., Araya, S., Nomiyama, K., Oizumi, K., Young, H.A., Aizawa, H. & Yodoi, J.2003Redox-active protein thioredoxin prevents proinflammatory cytokine- or bleomycin-induced lung injury. Am. J. Respir. Crit. Care. Med.168 (9), 1075-1083.
[46] Hu, Y., Romanò, F. & Grotberg, J.B.2020Effects of surface tension and yield stress on mucus plug rupture: a numerical study. Trans. ASME J. Biomech. Engng142 (6), 061007.
[47] Hughes, J.M., Rosenzweig, D.Y. & Kivitz, P.B.1970Site of airway closure in excised dog lungs: histologic demonstration. J. Appl. Physiol.29 (3), 340-344.
[48] Huh, D., Fujioka, H., Tung, Y.C., Futai, N., Paine, R., Grotberg, J.B. & Takayama, S.2007Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc. Natl Acad. Sci. USA104 (48), 18886-18891.
[49] Jacquot, J., Tabary, O., Le Rouzic, P. & Clement, A.2008Airway epithelial cell inflammatory signalling in cystic fibrosis. Intl J. Biochem. Cell. Biol.40 (9), 1703-1715.
[50] Johnson, G.R. & Morawska, L.2009The mechanism of breath aerosol formation. J. Aerosol Med. Pulm. Drug Deliv.22 (3), 229-237.
[51] Kamm, R.D. & Schroter, R.C.1989Is airway closure caused by a liquid film instability?Respir. Physiol.75 (2), 141-156.
[52] Kay, S.S., Bilek, A.M., Dee, K.C. & Gaver, D.P.2004Pressure gradient, not exposure duration, determines the extent of epithelial cell damage in a model of pulmonary airway reopening. J. Appl. Physiol.97 (1), 269-276.
[53] Kitaoka, H., Takaki, R. & Suki, B.1999A three-dimensional model of the human airway tree. J. Appl. Physiol.87 (6), 2207-2217.
[54] Lai, S.K., Wang, Y.Y., Wirtz, D. & Hanes, J.2009Micro- and macrorheology of mucus. Adv. Drug Deliv. Rev.61 (2), 86-100.
[55] Lee, W.L., Jayathilake, P.G., Tan, Z., Le, D.V., Lee, H.P. & Khoo, B.C.2011Muco-ciliary transport: effect of mucus viscosity, cilia beat frequency and cilia density. Comput. Fluids49 (1), 214-221. · Zbl 1271.76398
[56] Lewis, F.R.1980Management of atelectasis and pneumonia. Surg. Clin. North Am.60 (6), 1391-1401.
[57] Lewis, J.F. & Jobe, A.H.1993Surfactant and the adult respiratory distress syndrome. Am. Rev. Respir. Dis.147 (1), 218-233.
[58] Mansell, A., Bryan, C. & Levison, H.1972Airway closure in children. J. Appl. Physiol.33 (6), 711-714.
[59] Mittal, R., Ni, R. & Seo, J.-H.2020The flow physics of COVID-19. J. Fluid Mech.894, 1-14. · Zbl 1460.92061
[60] Moriarty, J.A. & Grotberg, J.B.1999Flow-induced instabilities of a mucus-serous bilayer. J. Fluid Mech.397, 1-22. · Zbl 0982.76041
[61] Muradoglu, M., Romanò, F., Fujioka, H. & Grotberg, J.B.2019Effects of surfactant on propagation and rupture of a liquid plug in a tube. J. Fluid Mech.872, 407-437. · Zbl 1430.76500
[62] Muradoglu, M. & Tryggvason, G.2008A front-tracking method for computation of interfacial flows with soluble surfactants. J. Comput. Phys.227 (4), 2238-2262. · Zbl 1329.76238
[63] Olgac, U., Kayaalp, A.D. & Muradoglu, M.2006Buoyancy-driven motion and breakup of viscous drops in constricted capillaries. Intl J. Multiphase Flow32 (9), 1055-1071. · Zbl 1136.76597
[64] Opal, S.M. & Depalo, V.A.2000Anti-inflammatory cytokines. Chest117 (4), 1162-1172.
[65] Peskin, C.S.1977Numerical analysis of blood flow in the heart. J. Comput. Phys.25 (3), 220-252. · Zbl 0403.76100
[66] Piva, S., Diblasi, R.M., Slee, A.E., Jobe, A.H., Roccaro, A.M., Filippini, M., Latronico, N., Bertoni, M., Marshall, J.C. & Portman, M.A.2021Surfactant therapy for Covid-19 related ARDS: a retrospective case-control pilot study. Respir. Res.22 (1), 1-8.
[67] Podgórski, A. & Gradoń, L.1990Dynamics of pulmonary surfactant system and its role in alveolar cleansing. Ann. Occup. Hyg.34 (2), 137-147.
[68] Popinet, S.2014 Basilisk. http://basilisk.fr.
[69] Puchelle, E., De Bentzmann, S. & Zahm, J.M.1995Physical and functional properties of airway secretions in cystic fibrosis – therapeutic approaches. Respir. Physiol.62 (2), 2-12.
[70] Randell, S.H. & Boucher, R.C.2006Effective mucus clearance is essential for respiratory health. Am. J. Respir. Cell Mol. Biol.35 (1), 20-28.
[71] Romanò, F., Fujioka, H., Muradoglu, M. & Grotberg, J.B.2019Liquid plug formation in an airway closure model. Phys. Rev. Fluids4 (9), 093103. · Zbl 1461.76582
[72] Romanò, F., Muradoglu, M., Fujioka, H. & Grotberg, J.B.2021The effect of viscoelasticity in an airway closure model. J. Fluid Mech.913, 1-26. · Zbl 1461.76582
[73] Rothen, H.U., Sporre, B., Engberg, G., Wegenius, G. & Hedenstierna, G.1998Airway closure, atelectasis and gas exchange during general anaesthesia. Br. J. Anaesth.81 (5), 681-686.
[74] Sardesai, S., Biniwale, M., Wertheimer, F., Garingo, A. & Ramanathan, R.2017Evolution of surfactant therapy for respiratory distress syndrome: past, present, and future. Pediatr. Res.81 (1), 240-248.
[75] Schürch, S., Gehr, P., Im Hof, V., Geiser, M. & Green, F.1990Surfactant displaces particles toward the epithelium in airways and alveoli. Respir. Physiol.80 (1), 17-32.
[76] Sethi, S., Mahler, D.A., Marcus, P., Owen, C.A., Yawn, B. & Rennard, S.2012Inflammation in COPD: implications for management. Am. J. Med.125 (12), 1162-1170.
[77] Slutsky, A.S., Ranieri, V.M. & Fothergill, J.2013Ventilator-induced lung injury. N. Engl. J. Med.369, 2126-2136.
[78] Song, Y.2015 Stability analysis of a bilayer contained within a cylindrical tube. PhD thesis, The University of Alabama.
[79] Tai, C.F., Bian, S., Halpern, D., Zheng, Y., Filoche, M. & Grotberg, J.B.2011Numerical study of flow fields in an airway closure model. J. Fluid Mech.677, 483-502. · Zbl 1241.76472
[80] Tarran, R.2004Regulation of airway surface liquid volume and mucus transport by active ion transport. Proc. Am. Thorac. Soc.1 (1), 42-46.
[81] Tavana, H., Zamankhan, P., Christensen, P.J., Grotberg, J.B. & Takayama, S.2011Epithelium damage and protection during reopening of occluded airways in a physiologic microfluidic pulmonary airway model. Biomed. Microdevices13 (4), 731-742.
[82] Tibby, S.M., Hatherill, M., Wright, S.M., Wilson, P., Postle, A.D. & Murdoch, I.A.2000Exogenous surfactant supplementation in infants with respiratory syncytial virus bronchiolitis. Am. J. Respir. Crit. Care Med.162 (4 I), 1251-1256.
[83] Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S. & Jan, Y.J.2001A front-tracking method for the computations of multiphase flow. J. Comput. Phys.169 (2), 708-759. · Zbl 1047.76574
[84] Tryggvason, G., Scardovelli, R. & Zaleski, S.2011Direct Numerical Simulations of Gas-Liquid Multiphase Flows. Cambridge University Press. · Zbl 1226.76001
[85] Unverdi, S.O. & Tryggvason, G.1992A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys.100 (1), 25-37. · Zbl 0758.76047
[86] Veen, J.C.C.M., Beekman, A.J., Bel, E.H. & Sterk, P.J.2000Recurrent exacerbations in severe asthma are associated with enhanced airway closure during stable episodes. Am. J. Respir. Crit. Care Med.161 (6), 1902-1906.
[87] Weibel, E.R. & Gomez, D.M.1962Architecture of the human lung. Science137 (3530), 577-585.
[88] Widdicombe, J.H., Bastacky, S.J., Wu, D.X.Y. & Lee, C.Y.1997Regulation of depth and composition of airway surface liquid. Eur. Respir. J.10 (12), 2892-2897.
[89] Williams, O.W., Sharafkhaneh, A., Kim, V., Dickey, B.F. & Evans, C.M.2006Airway mucus: from production to secretion. Am. J. Respir. Cell Mol. Biol.34 (5), 527-536.
[90] Zheng, Y., Fujioka, H., Bian, S., Torisawa, Y., Huh, D., Takayama, S. & Grotberg, B.J.2009Liquid plug propagation in flexible microchannels: a small airway model. Phys. Fluids21 (7), 071903. · Zbl 1183.76603
[91] Zuo, Y.Y., Veldhuizen, R.A.W., Neumann, A.W., Petersen, N.O. & Possmayer, F.2008Current perspectives in pulmonary surfactant – inhibition, enhancement and evaluation. Biochim. Biophys. Acta Biomembr.1778 (10), 1947-1977.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.