×

Films in narrow tubes. (English) Zbl 1335.76011

Summary: We consider the axisymmetric arrangement of an annular liquid film, coating the inner surface of a narrow cylindrical tube, in interaction with an active core fluid. We introduce a low-dimensional model based on the two-phase weighted residual integral boundary layer (WRIBL) formalism [G. F. Dietze and C. Ruyer-Quil, J. Fluid Mech. 722, 348–393 (2013; Zbl 1287.76050)] which is able to capture the long-wave instabilities characterizing such flows. Our model improves upon existing works by fully representing interfacial coupling and accounting for inertia as well as streamwise viscous diffusion in both phases. We apply this model to gravity-free liquid-film/core-fluid arrangements in narrow capillaries with specific attention to the dynamics leading to flooding, i.e. when the liquid film drains into large-amplitude collars that occlude the tube cross-section. We do this against the background of linear stability calculations and nonlinear two-phase direct numerical simulations (DNS). Due to the improvements of our model, we have found a number of novel/salient physical features of these flows. First, we show that it is essential to account for inertia and full interphase coupling to capture the temporal evolution of flooding for fluid combinations that are not dominated by viscosity, e.g. water/air and water/silicone oil. Second, we elucidate a viscous-blocking mechanism which drastically delays flooding in thin films that are too thick to form unduloids. This mechanism involves buckling of the residual film between two liquid collars, generating two very pronounced film troughs where viscous dissipation is drastically increased and growth effectively arrested. Only at very long times does breaking of symmetry in this region (due to small perturbations) initiate a sliding motion of the liquid film similar to observations by J. R. Lister et al. [J. Fluid Mech. 552, 311–343 (2006; Zbl 1151.76376)] in thin non-flooding films. This kickstarts the growth of liquid collars anew and ultimately leads to flooding. We show that streamwise viscous diffusion is essential to this mechanism. Low-frequency core-flow oscillations, such as occur in human pulmonary capillaries, are found to set off this sliding-induced flooding mechanism much earlier.

MSC:

76A20 Thin fluid films
Full Text: DOI

References:

[1] DOI: 10.1146/annurev-fluid-120710-101244 · Zbl 1353.76006 · doi:10.1146/annurev-fluid-120710-101244
[2] Ribe, J. Fluid Mech. 457 pp 255– (2002) · Zbl 1060.76014 · doi:10.1017/S0022112001007649
[3] DOI: 10.1080/14786449208620304 · doi:10.1080/14786449208620304
[4] DOI: 10.1017/S0022029996001963 · doi:10.1017/S0022029996001963
[5] DOI: 10.1017/S0022112089002077 · doi:10.1017/S0022112089002077
[6] DOI: 10.1063/1.1693422 · Zbl 0216.52703 · doi:10.1063/1.1693422
[7] DOI: 10.1146/annurev-fluid-122109-160703 · Zbl 1299.76319 · doi:10.1146/annurev-fluid-122109-160703
[8] DOI: 10.1017/S0022112083002451 · Zbl 0571.76046 · doi:10.1017/S0022112083002451
[9] Hamacher, Fluid Sciences and Materials Science in Space (1987)
[10] DOI: 10.1017/S0022112003005573 · Zbl 1063.76557 · doi:10.1017/S0022112003005573
[11] DOI: 10.1063/1.3294573 · Zbl 1183.76234 · doi:10.1063/1.3294573
[12] DOI: 10.1063/1.3517737 · doi:10.1063/1.3517737
[13] DOI: 10.1146/annurev.fl.26.010194.002525 · doi:10.1146/annurev.fl.26.010194.002525
[14] DOI: 10.1017/S0022112067000357 · Zbl 0144.47102 · doi:10.1017/S0022112067000357
[15] DOI: 10.1063/1.857327 · Zbl 0691.76056 · doi:10.1063/1.857327
[16] DOI: 10.1146/annurev-fluid-010313-141351 · doi:10.1146/annurev-fluid-010313-141351
[17] DOI: 10.1016/j.rser.2008.09.034 · doi:10.1016/j.rser.2008.09.034
[18] DOI: 10.1017/S002211206200021X · Zbl 0105.39602 · doi:10.1017/S002211206200021X
[19] DOI: 10.1016/0009-2509(88)85137-6 · doi:10.1016/0009-2509(88)85137-6
[20] DOI: 10.1016/0021-9797(87)90027-0 · doi:10.1016/0021-9797(87)90027-0
[21] DOI: 10.1017/S0022112096000055 · Zbl 0859.76019 · doi:10.1017/S0022112096000055
[22] DOI: 10.1016/0021-9797(72)90228-7 · doi:10.1016/0021-9797(72)90228-7
[23] DOI: 10.1017/jfm.2013.543 · Zbl 1294.76144 · doi:10.1017/jfm.2013.543
[24] DOI: 10.1088/0034-4885/71/3/036601 · doi:10.1088/0034-4885/71/3/036601
[25] Delaunay, J. Math. Pures Appl. 6 pp 309– (1841)
[26] Wang, Phys. Fluids 25 (2013)
[27] DOI: 10.1017/S0022112094000480 · Zbl 0804.76027 · doi:10.1017/S0022112094000480
[28] DOI: 10.1002/aic.690460704 · doi:10.1002/aic.690460704
[29] DOI: 10.1016/j.ijmultiphaseflow.2010.03.006 · doi:10.1016/j.ijmultiphaseflow.2010.03.006
[30] DOI: 10.1016/j.ijmultiphaseflow.2005.07.005 · Zbl 1135.76406 · doi:10.1016/j.ijmultiphaseflow.2005.07.005
[31] Chen, Phys. Fluids 3 pp 2627– (1991)
[32] Trifonov, AIChE J. 56 pp 1975– (2010)
[33] DOI: 10.1017/jfm.2013.98 · Zbl 1287.76050 · doi:10.1017/jfm.2013.98
[34] DOI: 10.1103/PhysRevE.86.066305 · doi:10.1103/PhysRevE.86.066305
[35] DOI: 10.1002/aic.690380604 · doi:10.1002/aic.690380604
[36] DOI: 10.1017/S0022112057000373 · Zbl 0078.18003 · doi:10.1017/S0022112057000373
[37] Timmermans, J. Fluid Mech. 459 pp 289– (2002) · Zbl 1031.76020 · doi:10.1017/S0022112002008224
[38] DOI: 10.1017/S0022112010000091 · Zbl 1189.76014 · doi:10.1017/S0022112010000091
[39] Thiele, Phys. Rev. Lett. 111 (2013)
[40] DOI: 10.1017/S0022112096008440 · Zbl 0889.76013 · doi:10.1017/S0022112096008440
[41] DOI: 10.1017/jfm.2011.96 · Zbl 1241.76472 · doi:10.1017/jfm.2011.96
[42] DOI: 10.1017/S0022112090002774 · doi:10.1017/S0022112090002774
[43] DOI: 10.1063/1.863241 · doi:10.1063/1.863241
[44] Alekseenko, Wave Flow of Liquid Films (1994)
[45] DOI: 10.1017/jfm.2011.437 · Zbl 1250.76074 · doi:10.1017/jfm.2011.437
[46] DOI: 10.1098/rspa.2008.0142 · Zbl 1186.76639 · doi:10.1098/rspa.2008.0142
[47] DOI: 10.1017/S0022112003006736 · Zbl 1065.76052 · doi:10.1017/S0022112003006736
[48] DOI: 10.1007/BF01024797 · doi:10.1007/BF01024797
[49] Selvam, J. Fluid Mech. 618 pp 328– (2009) · Zbl 1156.76387 · doi:10.1017/S0022112008004242
[50] Ruyer-Quil, J. Fluid Mech. 603 pp 431– (2008) · Zbl 1151.76378 · doi:10.1017/S0022112008001225
[51] DOI: 10.1063/1.1426103 · Zbl 1184.76467 · doi:10.1063/1.1426103
[52] DOI: 10.1007/s100510051137 · doi:10.1007/s100510051137
[53] DOI: 10.1140/epje/i2014-14030-5 · doi:10.1140/epje/i2014-14030-5
[54] DOI: 10.1103/PhysRevE.85.046302 · doi:10.1103/PhysRevE.85.046302
[55] DOI: 10.1017/S0022112083002943 · Zbl 0525.76016 · doi:10.1017/S0022112083002943
[56] DOI: 10.1017/S0022112089000960 · Zbl 0683.76039 · doi:10.1017/S0022112089000960
[57] DOI: 10.1146/annurev.fluid.31.1.347 · doi:10.1146/annurev.fluid.31.1.347
[58] DOI: 10.1023/A:1004564301235 · Zbl 0953.76030 · doi:10.1023/A:1004564301235
[59] DOI: 10.1016/j.jcp.2009.04.042 · Zbl 1280.76020 · doi:10.1016/j.jcp.2009.04.042
[60] DOI: 10.1039/c1sm05282a · doi:10.1039/c1sm05282a
[61] DOI: 10.1063/1.857784 · Zbl 0704.76060 · doi:10.1063/1.857784
[62] DOI: 10.1017/S0022112008004230 · Zbl 1156.76340 · doi:10.1017/S0022112008004230
[63] d’Olce, Phys. Fluids 20 (2008) · Zbl 1182.76207 · doi:10.1063/1.2838582
[64] DOI: 10.1146/annurev.fl.28.010196.001155 · doi:10.1146/annurev.fl.28.010196.001155
[65] DOI: 10.1063/1.3541856 · doi:10.1063/1.3541856
[66] DOI: 10.1063/1.3154586 · Zbl 1183.76389 · doi:10.1063/1.3154586
[67] DOI: 10.1017/S0022112092002337 · doi:10.1017/S0022112092002337
[68] Mehidi, C. R. Méc. 337 pp 112– (2009) · Zbl 1465.76004 · doi:10.1016/j.crme.2009.03.002
[69] DOI: 10.1063/1.3663616 · doi:10.1063/1.3663616
[70] DOI: 10.1103/PhysRevE.87.053018 · doi:10.1103/PhysRevE.87.053018
[71] DOI: 10.1017/S0022112006008822 · Zbl 1151.76376 · doi:10.1017/S0022112006008822
[72] DOI: 10.1063/1.1445417 · doi:10.1063/1.1445417
[73] DOI: 10.1063/1.1352623 · Zbl 1184.76302 · doi:10.1063/1.1352623
[74] DOI: 10.1017/S0022112095002448 · Zbl 0855.76028 · doi:10.1017/S0022112095002448
[75] Kapitza, Zh. Eksp. Teor. Fiz. 18 (1948)
[76] DOI: 10.1007/978-1-84882-367-9 · Zbl 1231.76001 · doi:10.1007/978-1-84882-367-9
[77] DOI: 10.1146/annurev.fluid.29.1.65 · doi:10.1146/annurev.fluid.29.1.65
[78] DOI: 10.1017/S0022112099004413 · Zbl 0940.76502 · doi:10.1017/S0022112099004413
[79] DOI: 10.1017/S0022112091000423 · Zbl 0738.76030 · doi:10.1017/S0022112091000423
[80] DOI: 10.1002/zamm.19360160611 · doi:10.1002/zamm.19360160611
[81] DOI: 10.1006/jcis.1999.6551 · doi:10.1006/jcis.1999.6551
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.