×

Witten non abelian localization for equivariant \(K\)-theory, and the \([Q,R]=0\) theorem. (English) Zbl 1439.58015

Memoirs of the American Mathematical Society 1257. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-3522-6/pbk; 978-1-4704-5397-8/ebook). v, 71 p. (2019).
Let \(M\) be a closed manifold with an action of a compact Lie group \(K\) with Lie algebra \(\mathfrak{k}\) and \(\Phi : M \to \mathfrak{k}\) a \(K\)-equivariant map. In this memoir, the authors firstly prove a localization theorem that localize the study of the equivariant index of any \(\sigma \in \mathrm{K}^{0}_{K}(T^{\ast}M)\) to the study of the equivariant index of the deformed element on a neighborhood of the zeros of the map \(\Phi\). The theorem is a generalization of a \(K\)-theoretical analogue of the Witten deformation by the first author [P.-E. Paradan, J. Funct. Anal. 187, No. 2, 442–509 (2001; Zbl 1001.53062)].
Secondly, the authors reprove the \([Q,R] = 0\) theorem (quantization commutes with reduction theorem) of E. Meinrenken and S. Sjamaar [Topology 38, No. 4, 699–762 (1999; Zbl 0928.37013)] by using their \(K\)-theoretical localization theorem. They also prove a generalization of the \([Q,R] = 0\) theorem in the context of almost complex manifolds and a \([Q,R] = 0\) theorem for Clifford bundles in an asymptotic sense. The asymptotic \([Q,R] = 0\) theorem plays an essential role in [P.-E. Paradan, J. Symplectic Geom. 17, No. 5, 1389–1426 (2019; Zbl 1445.22003)].
Finally, the authors describe in detail some applications of their \([Q,R] = 0\) theorem. In particular, they give a unified proof on the piecewise quasi-polynomial behaviour of the multiplicity function \(\mathrm{m}_{\mu}(L)\) via Hamiltonian geometry and the \([Q,R] = 0\) theorem. Here, \(\mathrm{m}_{\mu}(L)\) is the multiplicity function in the geometric quantization \(RR_{K}(M,L) = \sum_{\mu \in \hat{K}}\mathrm{m}_{\mu}(L)V_{\mu}\) for a symplectic manifold \(M\) and the Kostant line bundle \(L\).

MSC:

58J20 Index theory and related fixed-point theorems on manifolds
53D50 Geometric quantization
53C27 Spin and Spin\({}^c\) geometry
19K56 Index theory
57S15 Compact Lie groups of differentiable transformations
32Q60 Almost complex manifolds

References:

[1] Atiyah, Michael Francis, Elliptic operators and compact groups, Lecture Notes in Mathematics, Vol. 401, ii+93 pp. (1974), Springer-Verlag, Berlin-New York · Zbl 0297.58009
[2] Atiyah, M. F., Convexity and commuting Hamiltonians, Bull. London Math. Soc., 14, 1, 1-15 (1982) · Zbl 0482.58013 · doi:10.1112/blms/14.1.1
[3] Atiyah, M. F.; Segal, G. B., The index of elliptic operators. II, Ann. of Math. (2), 87, 531-545 (1968) · Zbl 0164.24201 · doi:10.2307/1970716
[4] Atiyah, M. F.; Singer, I. M., The index of elliptic operators. I, Ann. of Math. (2), 87, 484-530 (1968) · Zbl 0164.24001 · doi:10.2307/1970715
[5] Atiyah, M. F.; Singer, I. M., The index of elliptic operators. III, Ann. of Math. (2), 87, 546-604 (1968) · Zbl 0164.24301 · doi:10.2307/1970717
[6] Atiyah, M. F.; Singer, I. M., The index of elliptic operators. V, Ann. of Math. (2), 93, 139-149 (1971) · Zbl 0212.28603 · doi:10.2307/1970757
[7] Berenstein, Arkady; Sjamaar, Reyer, Coadjoint orbits, moment polytopes, and the Hilbert-Mumford criterion, J. Amer. Math. Soc., 13, 2, 433-466 (2000) · Zbl 0979.53092 · doi:10.1090/S0894-0347-00-00327-1
[8] Berline, Nicole; Getzler, Ezra; Vergne, Mich\`ele, Heat kernels and Dirac operators, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 298, viii+369 pp. (1992), Springer-Verlag, Berlin · Zbl 0744.58001 · doi:10.1007/978-3-642-58088-8
[9] Berline, Nicole; Vergne, Mich\`ele, The Chern character of a transversally elliptic symbol and the equivariant index, Invent. Math., 124, 1-3, 11-49 (1996) · Zbl 0847.46037 · doi:10.1007/s002220050045
[10] Berline, Nicole; Vergne, Mich\`ele, L’indice \'{e}quivariant des op\'{e}rateurs transversalement elliptiques, Invent. Math., 124, 1-3, 51-101 (1996) · Zbl 0883.58037 · doi:10.1007/s002220050046
[11] Braverman, Maxim, Index theorem for equivariant Dirac operators on noncompact manifolds, \(K\)-Theory, 27, 1, 61-101 (2002) · Zbl 1020.58020 · doi:10.1023/A:1020842205711
[12] Braverman, Maxim, The index theory on non-compact manifolds with proper group action, J. Geom. Phys., 98, 275-284 (2015) · Zbl 1329.58021 · doi:10.1016/j.geomphys.2015.08.014
[13] Brion, Michel, Restriction de repr\'{e}sentations et projections d’orbites coadjointes (d’apr\`es Belkale, Kumar et Ressayre), Ast\'{e}risque, 352, Exp. No. 1043, vii, 1-33 (2013) · Zbl 1295.22029
[14] Derksen, Harm; Weyman, Jerzy, On the Littlewood-Richardson polynomials, J. Algebra, 255, 2, 247-257 (2002) · Zbl 1018.16012 · doi:10.1016/S0021-8693(02)00125-4
[15] Duistermaat, Hans; Guillemin, Victor; Meinrenken, Eckhard; Wu, Siye, Symplectic reduction and Riemann-Roch for circle actions, Math. Res. Lett., 2, 3, 259-266 (1995) · Zbl 0839.58026 · doi:10.4310/MRL.1995.v2.n3.a3
[16] Guillemin, Victor, Reduced phase spaces and Riemann-Roch. Lie theory and geometry, Progr. Math. 123, 305-334 (1994), Birkh\"{a}user Boston, Boston, MA · Zbl 0869.58017 · doi:10.1007/978-1-4612-0261-5\_11
[17] Guillemin, V.; Sternberg, S., Convexity properties of the moment mapping, Invent. Math., 67, 3, 491-513 (1982) · Zbl 0503.58017 · doi:10.1007/BF01398933
[18] Guillemin, V.; Sternberg, S., Geometric quantization and multiplicities of group representations, Invent. Math., 67, 3, 515-538 (1982) · Zbl 0503.58018 · doi:10.1007/BF01398934
[19] Guillemin, Victor; Sternberg, Shlomo, A normal form for the moment map. Differential geometric methods in mathematical physics, Jerusalem, 1982, Math. Phys. Stud. 6, 161-175 (1984), Reidel, Dordrecht · Zbl 0538.00013
[20] Hochs, Peter; Mathai, Varghese, Quantising proper actions on \(Spin^c\)-manifolds, Asian J. Math., 21, 4, 631-685 (2017) · Zbl 1381.53085 · doi:10.4310/AJM.2017.v21.n4.a2
[21] Jeffrey, Lisa C.; Kirwan, Frances C., Localization and the quantization conjecture, Topology, 36, 3, 647-693 (1997) · Zbl 0876.55007 · doi:10.1016/S0040-9383(96)00015-8
[22] Kahle, Thomas; Micha\l ek, Mateusz, Plethysm and lattice point counting, Found. Comput. Math., 16, 5, 1241-1261 (2016) · Zbl 1394.20024 · doi:10.1007/s10208-015-9275-7
[23] Kawasaki, Tetsuro, The index of elliptic operators over \(V\)-manifolds, Nagoya Math. J., 84, 135-157 (1981) · Zbl 0437.58020
[24] King, Ronald C.; Tollu, Christophe; Toumazet, Fr\'{e}d\'{e}ric, Factorisation of Littlewood-Richardson coefficients, J. Combin. Theory Ser. A, 116, 2, 314-333 (2009) · Zbl 1207.05214 · doi:10.1016/j.jcta.2008.06.005
[25] Kirwan, Frances, Convexity properties of the moment mapping. III, Invent. Math., 77, 3, 547-552 (1984) · Zbl 0561.58016 · doi:10.1007/BF01388838
[26] Kumar, Shrawan; Prasad, Dipendra, Dimension of zero weight space: an algebro-geometric approach, J. Algebra, 403, 324-344 (2014) · Zbl 1300.22008 · doi:10.1016/j.jalgebra.2014.01.006
[27] Lerman, Eugene; Meinrenken, Eckhard; Tolman, Sue; Woodward, Chris, Nonabelian convexity by symplectic cuts, Topology, 37, 2, 245-259 (1998) · Zbl 0913.58023 · doi:10.1016/S0040-9383(97)00030-X
[28] Ma, Xiaonan; Zhang, Weiping, Geometric quantization for proper moment maps: the Vergne conjecture, Acta Math., 212, 1, 11-57 (2014) · Zbl 1380.53102 · doi:10.1007/s11511-014-0108-3
[29] Mathai, Varghese; Zhang, Weiping, Geometric quantization for proper actions, Adv. Math., 225, 3, 1224-1247 (2010) · Zbl 1211.53101 · doi:10.1016/j.aim.2010.03.023
[30] Meinrenken, Eckhard, On Riemann-Roch formulas for multiplicities, J. Amer. Math. Soc., 9, 2, 373-389 (1996) · Zbl 0851.53020 · doi:10.1090/S0894-0347-96-00197-X
[31] Meinrenken, Eckhard, Symplectic surgery and the \(\text{Spin}^c\)-Dirac operator, Adv. Math., 134, 2, 240-277 (1998) · Zbl 0929.53045 · doi:10.1006/aima.1997.1701
[32] Meinrenken, Eckhard; Sjamaar, Reyer, Singular reduction and quantization, Topology, 38, 4, 699-762 (1999) · Zbl 0928.37013 · doi:10.1016/S0040-9383(98)00012-3
[33] K. Mulmuley, Geometric Complexity Theory VI: the flip via saturated and positive integer programming in representation theory and algebraic geometry, preprint arXiv:0704.0229 (2007).
[34] Paradan, Paul-Emile, Formules de localisation en cohomologie equivariante, Compositio Math., 117, 3, 243-293 (1999) · Zbl 0934.55006 · doi:10.1023/A:1000602914188
[35] Paradan, Paul-Emile, Localization of the Riemann-Roch character, J. Funct. Anal., 187, 2, 442-509 (2001) · Zbl 1001.53062 · doi:10.1006/jfan.2001.3825
[36] Paradan, Paul-\'{E}mile, \( \text{Spin}^c\)-quantization and the \(K\)-multiplicities of the discrete series, Ann. Sci. \'{E}cole Norm. Sup. (4), 36, 5, 805-845 (2003) · Zbl 1091.53059 · doi:10.1016/j.ansens.2003.03.001
[37] Paradan, Paul-\'{E}mile, Formal geometric quantization, Ann. Inst. Fourier (Grenoble), 59, 1, 199-238 (2009) · Zbl 1163.53056
[38] Paradan, Paul-\'{E}mile, Formal geometric quantization II, Pacific J. Math., 253, 1, 169-211 (2011) · Zbl 1235.53093 · doi:10.2140/pjm.2011.253.169
[39] Paradan, Paul-Emile, Spin-quantization commutes with reduction, J. Symplectic Geom., 10, 3, 389-422 (2012) · Zbl 1272.81091
[40] P-E. Paradan, Stability property of multiplicities of group representations, preprint arXiv:1510.05080 (2015), to appear in J. of Symplectic Geometry.
[41] Paradan, Paul-\'{E}mile; Vergne, Mich\`ele, Index of transversally elliptic operators, Ast\'{e}risque, 328, 297-338 (2010) (2009) · Zbl 1209.19003
[42] Paradan, Paul-\'{E}mile; Vergne, Mich\`ele, The multiplicities of the equivariant index of twisted Dirac operators, C. R. Math. Acad. Sci. Paris, 352, 9, 673-677 (2014) · Zbl 1319.53045 · doi:10.1016/j.crma.2014.05.001
[43] Paradan, Paul-Emile; Vergne, Mich\`ele, Equivariant Dirac operators and differentiable geometric invariant theory, Acta Math., 218, 1, 137-199 (2017) · Zbl 1385.53035 · doi:10.4310/ACTA.2017.v218.n1.a3
[44] Paradan, P.-E.; Vergne, M., Admissible coadjoint orbits for compact Lie groups, Transform. Groups, 23, 3, 875-892 (2018) · Zbl 1404.22013 · doi:10.1007/s00031-017-9457-2
[45] Ressayre, N., Geometric invariant theory and the generalized eigenvalue problem, Invent. Math., 180, 2, 389-441 (2010) · Zbl 1197.14051 · doi:10.1007/s00222-010-0233-3
[46] Ressayre, Nicolas, Geometric invariant theory and generalized eigenvalue problem II, Ann. Inst. Fourier (Grenoble), 61, 4, 1467-1491 (2012) (2011) · Zbl 1245.14045 · doi:10.5802/aif.2647
[47] N. Ressayre, Reductions for branching coefficients, preprint arXiv:1102.0196 (2011). · Zbl 1481.14073
[48] Sjamaar, Reyer, Symplectic reduction and Riemann-Roch formulas for multiplicities, Bull. Amer. Math. Soc. (N.S.), 33, 3, 327-338 (1996) · Zbl 0857.58021 · doi:10.1090/S0273-0979-96-00661-1
[49] Song, Yanli, A \(K\)-homological approach to the quantization commutes with reduction problem, J. Geom. Phys., 112, 29-44 (2017) · Zbl 1360.53086 · doi:10.1016/j.geomphys.2016.08.017
[50] Teleman, Constantin, The quantization conjecture revisited, Ann. of Math. (2), 152, 1, 1-43 (2000) · Zbl 0980.53102 · doi:10.2307/2661378
[51] Tian, Youliang; Zhang, Weiping, An analytic proof of the geometric quantization conjecture of Guillemin-Sternberg, Invent. Math., 132, 2, 229-259 (1998) · Zbl 0944.53047 · doi:10.1007/s002220050223
[52] Vergne, Michele, Multiplicities formula for geometric quantization. I, II, III, Duke Math. J., 82, 1, 143-179, 181-194, 637-652 (1996) · Zbl 0855.58033 · doi:10.1215/S0012-7094-96-08206-X
[53] Vergne, Mich\`ele, Quantification g\'{e}om\'{e}trique et r\'{e}duction symplectique, Ast\'{e}risque, 282, Exp. No. 888, viii, 249-278 (2002) · Zbl 1037.53062
[54] Witten, Edward, Two-dimensional gauge theories revisited, J. Geom. Phys., 9, 4, 303-368 (1992) · Zbl 0768.53042 · doi:10.1016/0393-0440(92)90034-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.